сила это что такое сила: определение — философия.нэс. Сила (физическая величина)

См. также «Физический портал»

Сила как векторная величина характеризуется модулем , направлением и «точкой» приложения силы. Последним параметром понятие о силе, как векторе в физике, отличается от понятия о векторе в векторной алгебре, где равные по модулю и направлению векторы, независимо от точки их приложения, считаются одним и тем же вектором. В физике эти векторы называются свободными векторами.В механике чрезвычайно распространено представление о связанных векторах, начало которых закреплено в определённой точке пространства или же может находиться на линии, продолжающей направление вектора (скользящие векторы). .

Также используется понятие линия действия силы , обозначающее проходящую через точку приложения силы прямую, по которой направлена сила.

Размерность силы - LMT −2 , единицей измерения в Международной системе единиц (СИ) является ньютон (N, Н), в системе СГС - дина .

История понятия

Понятие силы использовали ещё ученые античности в своих работах о статике и движении. Изучением сил в процессе конструирования простых механизмов занимался в III в. до н. э. Архимед . Представления Аристотеля о силе, связанные с фундаментальными несоответствиями, просуществовали в течение нескольких столетий. Эти несоответствия устранил в XVII в. Исаак Ньютон , используя для описания силы математические методы. Механика Ньютона оставалась общепринятой на протяжении почти трехсот лет. К началу XX в. Альберт Эйнштейн в теории относительности показал, что ньютоновская механика верна лишь в при сравнительно небольших скоростях движения и массах тел в системе, уточнив тем самым основные положения кинематики и динамики и описав некоторые новые свойства пространства-времени .

Ньютоновская механика

Исаак Ньютон задался целью описать движение объектов, используя понятия инерции и силы. Сделав это, он попутно установил, что всякое механическое движение подчиняется общим законам сохранения . В г. Ньютон опубликовал свой знаменитый труд « », в котором изложил три основополагающих закона классической механики (знаменитые законы Ньютона).

Первый закон Ньютона

Например, законы механики абсолютно одинаково выполняются в кузове грузовика, когда тот едет по прямому участку дороги с постоянной скоростью и когда стоит на месте. Человек может подбросить мячик вертикально вверх и поймать его через некоторое время на том же самом месте вне зависимости от того движется ли грузовик равномерно и прямолинейно или покоится. Для него мячик летит по прямой. Однако для стороннего наблюдателя, находящегося на земле, траектория движения мячика имеет вид параболы . Это связано с тем, что мячик относительно земли движется во время полета не только вертикально, но и горизонтально по инерции в сторону движения грузовика. Для человека, находящегося в кузове грузовика не имеет значения движется ли последний по дороге, или окружающий мир перемещается с постоянной скоростью в противоположном направлении, а грузовик стоит на месте. Таким образом, состояние покоя и равномерного прямолинейного движения физически неотличимы друг от друга.

Второй закон Ньютона

По определению импульса:

где − масса, − скорость .

Если масса материальной точки остается неизменной, то производная по времени от массы равна нулю, и уравнение принимает вид:

Третий закон Ньютона

Для любых двух тел (назовем их тело 1 и тело 2) третий закон Ньютона утверждает, что сила действия тела 1 на тело 2, сопровождается появлением равной по модулю, но противоположной по направлению силы, действующей на тело 1 со стороны тела 2. Математически закон записывается так:

Этот закон означает, что силы всегда возникают парами «действие-противодействие». Если тело 1 и тело 2 находятся в одной системе, то суммарная сила в системе, обусловленная взаимодействием этих тел равна нулю:

Это означает, что в замкнутой системе не существует несбалансированных внутренних сил. Это приводит к тому, что центр масс замкнутой системы (то есть той, на которую не действуют внешние силы) не может двигаться с ускорением . Отдельные части системы могут ускоряться, но лишь таким образом, что система в целом остается в состоянии покоя или равномерного прямолинейного движения. Однако в том случае, если внешние силы подействуют на систему, то ее центр масс начнет двигаться с ускорением, пропорциональным внешней результирующей силе и обратно пропорциональным массе системы.

Фундаментальные взаимодействия

Все силы в природе основаны на четырех типах фундаментальных взаимодействий. Максимальная скорость распространения всех видов взаимодействия равна скорости света в вакууме . Электромагнитные силы действуют между электрически заряженными телами, гравитационные − между массивными объектами. Сильное и слабое проявляются только на очень малых расстояниях , они ответственны за возникновение взаимодействия между субатомными частицами , включая нуклоны , из которых состоят атомные ядра .

Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы , и потому применение к ним термина «сила» объясняется берущей из античности традицией объяснять любые явления в окружаемом мире действием специфических для каждого явления «сил».

Понятие силы не может быть применено по отношению к явлениям субатомного мира. Это понятие из арсенала классической физики, ассоциирующейся (пусть даже только подсознательно) с ньютоновскими представлениями о силах, действующих на расстоянии. В субатомной физике таких сил уже нет: их заменяют взаимодействия между частицами, происходящими через посредство полей, то есть каких-то других частиц. Поэтому физики высоких энергий избегают употреблять слово сила , заменяя его словом взаимодействие .

Каждый вид взаимодействия обусловлен обменом соответствующих переносчиков взаимодействия: гравитационное − обменом гравитонов (существование не подтверждено экспериментально), электромагнитное − виртуальных фотонов , слабое − векторных бозонов , сильное − глюонов (и на больших расстояниях - мезонов). В настоящее время электромагнитное и слабое взаимодействия объединены в более фундаментальное электрослабое взаимодействие . Делаются попытки объединения всех четырех фундаментальных взаимодействие в одно (так называемая теория великого объединения).

Всё многообразие проявляющих себя в природе сил в принципе может быть сведено к этим четырем фундаментальным взаимодействиям. Например, трение − это проявление электромагнитных сил, действующих между атомами двух соприкасающихся поверхностей, и принципа запрета Паули , который не позволяет атомам проникать в область друг друга. Сила, возникающая при деформации пружины , описываемая законом Гука , также является результатом действия электромагнитных сил между частицами и принципа запрета Паули, заставляющих атомы кристаллической решетки вещества удерживаться около положения равновесия. .

Однако на практике оказывается не только нецелесообразной, но и просто невозможной по условиям задачи подобная детализация рассмотрения вопроса о действии сил.

Гравитация

Гравитация (сила тяготения ) - универсальное взаимодействие между любыми видами материи . В рамках классической механики описывается законом всемирного тяготения , сформулированным Исааком Ньютоном в его труде «Математические начала натуральной философии ». Ньютон получил величину ускорения, с которым Луна движется вокруг Земли , положив при расчете, что сила тяготения убывает обратно пропорционально квадрату расстояния от тяготеющего тела. Кроме этого, им же было установлено, что ускорение, обусловленное притяжением одного тела другим, пропорционально произведению масс этих тел . На основании этих двух выводов был сформулирован закон тяготения: любые материальные частицы притягиваются по направлению друг к другу с силой , прямо пропорциональной произведению масс ( и ) и обратно пропорциональной квадрату расстояния между ними:

Здесь − гравитационная постоянная , значение которой впервые получил в своих опытах Генри Кавендиш . Используя данный закон, можно получить формулы для расчета силы тяготения тел произвольной формы. Теория тяготения Ньютона хорошо описывает движение планет Солнечной системы и многих других небесных тел. Однако, в ее основе лежит концепция дальнодействия , противоречащая теории относительности . Поэтому классическая теория тяготения неприменима для описания движения тел, перемещающихся со скоростью , близкой к скорости света, гравитационных полей чрезвычайно массивных объектов (например, черных дыр), а также переменных полей тяготения, создаваемых движущимися телами, на больших расстояниях от них .

Электромагнитное взаимодействие

Электростатическое поле (поле неподвижных зарядов)

Развитие физики после Ньютона добавило к трём основным (длина, масса, время) величинам электрический заряд с размерностью C. Однако, исходя из требований практики, основанных на удобствах измерения, вместо заряда нередко стал использоваться электрический ток с размерностью I, причём I = C T − 1 . Единицей измерения величины заряда является кулон, а силы тока ампер.

Поскольку заряд, как таковой, не существует независимо от несущего его тела, то электрическое взаимодействие тел проявляется в виде той же рассматриваемой в механике силы, служащей причиной ускорения. Применительно к электростатическому взаимодействию двух «точечных зарядов» в вакууме используется закон Кулона:

где - расстояние между зарядами, а ε 0 ≈ 8.854187817·10 −12 Ф/м. В однородном (изотропном) веществе в этой системе сила взаимодействия уменьшается в ε раз, где ε - диэлектрическая постоянная среды.

Направление силы совпадает с линией, соединяющей точечные заряды. Графически электростатическое поле принято изображать в виде картины силовых линий, представляющих собой воображаемые траектории, по которым бы перемещалась лишённая массы заряжённая частица. Эти линии начинаются на одном и заканчиваются на другом зарядах.

Электромагнитное поле (поле постоянных токов)

Существование магнитного поля признавалось ещё в средние века китайцами, использовавшим «любящий камень» - магнит, в качестве прообраза магнитного компаса. Графически магнитное поле принято изображать в виде замкнутых силовых линий, густота которых (так же, как и в случае электростатического поля) определяет его интенсивность. Исторически наглядным способом визуализации магнитного поля были железные опилки, насыпаемые, например, на лист бумаги, положенный на магнит.

Производные виды сил

Сила упругости - сила, возникающая при деформации тела и противодействующая этой деформации. В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила упругости направлена противоположно смещению, перпендикулярно поверхности. Вектор силы противоположен направлению смещения молекул.

Сила трения - сила, возникающая при относительном движении твёрдых тел и противодействующая этому движению. Относится к диссипативным силам. Сила трения имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы трения направлен противоположно вектору скорости.

Сила сопротивления среды - сила, возникающая при движении твёрдого тела в жидкой или газообразной среде. Относится к диссипативным силам. Сила сопротивления имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы сопротивления направлен противоположно вектору скорости.

Сила нормальной реакции опоры - сила упругости, действующая со стороны опоры на тело. Направлена перпендикулярно к поверхности опоры.

Силы поверхностного натяжения - силы, возникающие на поверхности фазового раздела. Имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила натяжения направлена по касательной к поверхности раздела фаз; возникает вследствие нескомпенсированного притяжения молекул, находящихся на границе раздела фаз, молекулами, находящимися не на границе раздела фаз.

Осмотическое давление

Силы Ван-дер-Ваальса - электромагнитные межмолекулярные силы, возникающие при поляризации молекул и образовании диполей. Ван-дер-Ваальсовы силы быстро убывают с увеличением расстояния.

Сила инерции - фиктивная сила, вводимая в неинерциальных системах отсчёта для того, чтобы в них выполнялся второй закон Ньютона. В частности, в системе отсчёта , связанной с равноускоренно движущимся телом сила инерции направлена противоположно ускорению. Из полной силы инерции могут быть для удобства выделены центробежная сила и сила Кориолиса .

Равнодействующая

При расчёте ускорения тела все действующие на него силы заменяют одной силой, называемой равнодействующей. Это геометрическая сумма всех сил, действующих на тело. При этом действие каждой силы не зависит от действия других, то есть каждая сила сообщает телу такое ускорение, какое она сообщила бы в отсутствие действия других сил. Это утверждение носит название принципа независимости действия сил (принцип суперпозиции).

См. также

Источники

  • Григорьев В. И., Мякишев Г. Я. - «Силы в природе»
  • Ландау, Л. Д. , Лифшиц, Е. М. Механика - Издание 5-е, стереотипное. - М .: Физматлит , 2004. - 224 с. - («Теоретическая физика» , том I). - .

Примечания

  1. Glossary . Earth Observatory . NASA . - «Сила - любой внешний фактор, который вызывает изменение в движении свободного тела или возникновение внутренних напряжений в зафиксированном теле.» (англ.)
  2. Бронштейн И. Н. Семендяев К. А. Справочник по математике. М.: Издательство «Наука» Редакция справочной физико-математической литературы.1964.
  3. Feynman, R. P., Leighton, R. B., Sands, M. Lectures on Physics, Vol 1 - Addison-Wesley, 1963. (англ.)

1. Законы динамики Ньютона

законы или аксиомы движения (в формулировке самого Ньютона по книге «Математические начала натуральной философии» 1687 года): «I. Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние. II. Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует. III. Действию всегда есть равное и противоположное противодействие, иначе взаимодействия двух тел друг на друга между собой равны и направлены в противопо-ложные стороны».

2. Что такое сила?

Сила характеризуется величиной и направлением. Сила характеризует действие на данное тело других тел. Результат действия силы на тело зависит не только от ее величины и направления, но и от точки приложения силы. Равнодействующая – одна сила, результат действия которой будет таким же, каким бы был результат действия всех реальных сил. Если силы сонаправлены, равнодействующая равна их сумме и направлена в ту же сторону. Если же силы направлены в противоположные стороны, то равнодействующая равна их разности и направлена в сторону большей силы.

Сила тяжести и вес тела

Сила тяжести - это сила, с которой тело притягивается к Земле вследствие Всемирного тяготения. Все тела во Вселенной притягиваются друг к другу, причем, чем больше их массы и чем ближе они расположены, тем притяжение сильнее.

Чтобы вычислить силу тяжести, следует массу тела умножить на коэффициент, обозначаемый буквой g, приближенно равный 9,8Н/кг. Таким образом, сила тяжести рассчитывается по формуле

Вес тела - это сила, с которой тело давит на опору или растягивает подвес из-за притяжения к Земле. Если тело не имеет ни опоры, ни подвеса, то тело не имеет и веса – оно находится в состоянии невесомости.

Сила упругости

Сила упругости - это сила, которая возникает внутри тела в результате деформации и препятствует изменению формы. В зависимости от того, как изменяется форма тела, выделяют несколько видов деформации, в частности, растяжение и сжатие, изгиб, сдвиг и срез, кручение.

Чем больше изменяют форму тела, тем больше возникающая в нем сила упругости.

Динамометр – прибор для измерения силы: измеряемую силу сравнивают с силой упругости, возникающей в пружине динамометра.

Сила трения

Сила трения покоя - это сила, которая мешает сдвинуть тело с места.

Причина возникновения трения в том, что любые поверхности имеют неровности, которые зацепляются друг за друга. Если же поверхности отшлифованы, то причиной трения являются силы молекулярного взаимодействия. Когда тело движется по горизонтальной поверхности, сила трения направлена против движения и прямо пропорциональна силе тяжести:

Сила трения скольжения - это сила сопротивления при скольжении одного тела по поверхности другого. Сила трения качения - это сила сопротивления при качении одного тела по поверхности другого; она значительно меньше силы трения скольжения.

Если трение полезно, его усиливают; если вредно - уменьшают.

3. ЗАКОНЫ СОХРАНЕНИЯ

ЗАКОНЫ СОХРАНЕНИЯ , физические законы, согласно которым некоторое свойство замкнутой системы остается неизменным при каких-либо изменениях в системе. Самыми важными являются законы сохранения вещества и энергии. Закон сохранения вещества утверждает, что вещество не создается и не разрушается; при химических превращениях общая масса остается неизменной. Общее количество энергии в системе также остается неизменным; энергия только преобразуется из одной формы в другую. Оба эти закона верны лишь приблизительно. Масса и энергия могут превращаться одна в другую согласно уравнению Е = тс 2 . Неизменным остается лишь общее количество массы и эквивалентной ей энергии. Еще один закон сохранения касается электрического заряда: его также нельзя создать и нельзя уничтожить. В применении к ядерным процессам закон сохранения выражается в том, что общая величина заряда, спин и другие КВАНТОВЫЕ ЧИСЛА взаимодействующих частиц должны остаться такими же у частиц, возникших в результате взаимодействия. При сильных взаимодействиях все квантовые числа сохраняются. При слабых взаимодействиях некоторые из требований этого закона нарушаются, особенно в отношении ЧЕТНОСТИ.

Закон сохранения энергии можно объяснить на примере падения шара весом 1 кг с вы соты 100 м. Начальная общая энергия шара - это ею потенциальная энергия. Когда он падаег, погенциальная энергия постепенно убывает а кинетическая нарастает, но общее копичество энергии остается неизменным Таким образом, имеет место сохранение энергии. А - кинетическая энергия возрастает от 0 до максимума: В -- потенциальная энергия уменьшается от максимума до нуля; С -- общее количество энергии, которое равно сумме кинетическом и потен Закон сохранения вещества, утверждает, что в ходе химических реакций вещество не создается и не исчезает. Это явление можно продемонстрировать при помощи класси ческого опыта, при котором производится взвешивание свечи, горящей под стеклянным колпаком (А). В конце опыта вес колпака и его содержимого остаегся таким же, каким был в начале, хотя свеча, вещество которой состоит в основном из углерода и водорода, «исчезла», поскольку из нее выделились летучие продукты реакции (вода и углекислый газ). Только после того, как в конце XVIII в ученые признали принцип сохранения вещества, стал возможен количественных подход к химии.

Механическая работа совершается тогда, когда тело движется под действием приложенной к нему силы.

Механическая работа прямо пропорционально пройденному пути и пропорциональна силе:

Мощность

Быстроту выполнения работы в технике характеризуют мощностью .

Мощность равна отношению работы к времени, за которое она была совершена:

Энергия это физическая величина, показывающая какую работу может совершить тело. Энергия измеряется в джоулях .

При совершении работы энергия тел измеряется. Совершенная работа равна изменению энергии.

Потенциальная энергия определяется взаимным положением взаимодействующих тел ил частей одного и того же тела.

Е р = F h = gmh.

Где g = 9,8 Н /кг, m - масса тела (кг) , h – высота (м).

Кинетической энергией обладает тело в следствие своего движения. Чем больше масса тела и скорость, тем больше его кинетическая энергия.

5. основной закон динамики вращательного движения

Момент силы

1. Момент силы относительно оси вращения, (1.1) где– проекция силына плоскость, перпендикулярную оси вращения,– плечо силы(кратчайшее расстояние от оси вращения до линии действия силы).

2. Момент силы относительно неподвижной точки О (начала координат). (1.2) Определяется векторным произведением радиуса-вектора, проведенного из точки О в точку приложения силы, на эту силу;– псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк(«правило буравчика»). Модуль момента силы, (1.3) где– угол между векторамии,– плечо силы, кратчайшее расстояние между линией действия силы и точкой приложения силы.

Момент импульса

1. Момент импульса тела, вращающего относительно оси , (1.4) где– момент инерции тела,– угловая скорость. Момент импульса системы изтел есть векторная сумма моментов импульсов всех тел системы:. (1.5)

2. Момент импульса материальной точки с импульсом относительно неподвижной точки О (начала координат). (1.6) Определяется векторным произведением радиуса-вектора, проведенного из точки О в материальную точку, на вектор импульса;– псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк(«правило буравчика»). Модуль вектора момента импульса, (1.7) где– угол между векторамии,– плечо вектораотносительно точки О.

Момент инерции относительно оси вращения

1. Момент инерции материальной точки , (1.8) где– масса точки,– расстояние её от оси вращения.

2. Момент инерции дискретного твердого тела , (1.9) где– элемент массы твердого тела;– расстояние этого элемента от оси вращения;– число элементов тела.

3. Момент инерции в случае непрерывного распределения массы (сплошного твердого тела) . (1.10) Если тело однородно, т.е. его плотностьодинакова по всему объему, то используется выражение(1.11), гдеиобъем тела.

Слово «сила» настолько всеобъемлюще, что дать ему четкое понятие - задача практически невыполнимая. Разнообразие от силы мышц до силы разума не охватывает весь спектр вложенных в него понятий. Сила, рассмотренная как физическая величина, имеет четко определенное значение и определение. Формула силы задает математическую модель: зависимость силы от основных параметров.

История исследования сил включает определение зависимости от параметров и экспериментальное доказательство зависимости.

Сила в физике

Сила - мера взаимодействия тел. Взаимное действие тел друг на друга полностью описывает процессы, связанные с изменением скорости или деформацией тел.

Как физическая величина сила имеет единицу измерения (в системе СИ - Ньютон) и прибор для ее измерения - динамометр. Принцип действия силомера основан на сравнении силы, действующей на тело, с силой упругости пружины динамометра.

За силу в 1 ньютон принята сила, под действием которой тело массой 1 кг изменяет свою скорость на 1 м за 1 секунду.

Сила как определяется:

  • направлением действия;
  • точкой приложения;
  • модулем, абсолютной величиной.

Описывая взаимодействие, обязательно указывают эти параметры.

Виды природных взаимодействий: гравитационные, электромагнитные, сильные, слабые. Гравитационные всемирного тяготения с ее разновидностью - силой тяжести) существуют благодаря влиянию гравитационных полей, окружающих любое тело, имеющее массу. Исследование полей гравитации не закончено до сих пор. Найти источник поля пока не представляется возможным.

Больший ряд сил возникает вследствие электромагнитного взаимодействия атомов, из которых состоит вещество.

Сила давления

При взаимодействии тела с Землей оно оказывает давление на поверхность. Сила которой имеет вид: P = mg, определяется массой тела (m). Ускорение свободного падения (g) имеет различные значения на разных широтах Земли.

Сила вертикального давления равна по модулю и противоположна по направлению силе упругости, возникающей в опоре. Формула силы при этом меняется в зависимости от движения тела.

Изменение веса тела

Действие тела на опору вследствие взаимодействия с Землей чаще именуют весом тела. Интересно, что величина веса тела зависит от ускорения движения в вертикальном направлении. В том случае, когда направление ускорения противоположно ускорению свободного падения, наблюдается увеличение веса. Если ускорение тела совпадает с направлением свободного падения, то вес тела уменьшается. К примеру, находясь в поднимающемся лифте, в начале подъема человек чувствует увеличение веса некоторое время. Утверждать, что его масса меняется, не приходится. При этом разделяем понятия «вес тела» и его «масса».

Сила упругости

При изменении формы тела (его деформации) появляется сила, которая стремится вернуть телу его первоначальную форму. Этой силе дали название "сила упругости". Возникает она вследствие электрического взаимодействия частиц, из которых состоит тело.

Рассмотрим простейшую деформацию: растяжение и сжатие. Растяжение сопровождается увеличением линейных размеров тел, сжатие - их уменьшением. Величину, характеризующую эти процессы, называют удлинением тела. Обозначим ее "x". Формула силы упругости напрямую связана с удлинением. Каждое тело, подвергающееся деформации, имеет собственные геометрические и физические параметры. Зависимость упругого сопротивления деформации от свойств тела и материала, из которого оно изготовлено, определяется коэффициентом упругости, назовем его жесткостью (k).

Математическая модель упругого взаимодействия описывается законом Гука.

Сила, возникающая при деформации тела, направлена против направления смещения отдельных частей тела, прямо пропорциональна его удлинению:

  • F y = -kx (в векторной записи).

Знак «-» говорит о противоположности направления деформации и силы.

В скалярной форме отрицательный знак отсутствует. Сила упругости, формула которой имеет следующий вид F y = kx, используется только при упругих деформациях.

Взаимодействие магнитного поля с током

Влияние магнитного поля на постоянный ток описывается При этом сила, с которой магнитное поле действует на проводник с током, помещенный в него, называется силой Ампера.

Взаимодействие магнитного поля с вызывает силовое проявление. Сила Ампера, формула которой имеет вид F = IBlsinα, зависит от (В), длины активной части проводника (l), (I) в проводнике и угла между направлением тока и магнитной индукцией.

Благодаря последней зависимости можно утверждать, что вектор действия магнитного поля может измениться при повороте проводника или изменении направления тока. Правило левой руки позволяет установить направление действия. Если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца были направлены по току в проводнике, то отогнутый на 90 ° большой палец покажет направление действия магнитного поля.

Применение этому воздействию человечеством найдено, к примеру, в электродвигателях. Вращение ротора вызывается магнитным полем, созданным мощным электромагнитом. Формула силы позволяет судить о возможности изменения мощности двигателя. С увеличением силы тока или величины поля вращательный момент возрастает, что приводит к увеличению мощности двигателя.

Траектории частиц

Взаимодействие магнитного поля с зарядом широко используется в масс-спектрографах при исследовании элементарных частиц.

Действие поля при этом вызывает появление силы, названной силой Лоренца. При попадании в магнитное поле движущейся с некоторой скоростью заряженной частицы формула которой имеет вид F = vBqsinα, вызывает движение частицы по окружности.

В этой математической модели v - модуль скорости частицы, электрический заряд которой - q, В - магнитная индукция поля, α - угол между направлениями скорости и магнитной индукции.

Частица движется по окружности (либо дуге окружности), так как сила и скорость направлены под углом 90 ° друг к другу. Изменение направления линейной скорости вызывает появление ускорения.

Правило левой руки, рассмотренное выше, имеет место и при изучении силы Лоренца: если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца, вытянутых в линию, были направлены по скорости положительно заряженной частицы, то отогнутый на 90 ° большой палец покажет направление действия силы.

Проблемы плазмы

Взаимодействие магнитного поля и вещества используется в циклотронах. Проблемы, связанные с лабораторным изучением плазмы, не позволяют содержать ее в замкнутых сосудах. Высоко может существовать только при высоких температурах. Удержать плазму в одном месте пространства можно посредством магнитных полей, закручивая газ в виде кольца. Управляемые можно изучать, также закручивая высокотемпературную плазму в шнур при помощи магнитных полей.

Пример действия магнитного поля в естественных условиях на ионизированный газ - Полярное сияние. Это величественное зрелище наблюдается за полярным кругом на высоте 100 км над поверхностью земли. Загадочное красочное свечение газа пояснить смогли лишь в ХХ веке. Магнитное поле земли вблизи полюсов не может препятствовать проникновению солнечного ветра в атмосферу. Наиболее активное излучение, направленное вдоль линий магнитной индукции, вызывает ионизацию атмосферы.

Явления, связанные с движением заряда

Исторически сложилось так, что основной величиной, характеризующей протекание тока в проводнике, называют силу тока. Интересно, что это понятие ничего общего с силой в физике не имеет. Сила тока, формула которой включает заряд, протекающий за единицу времени через поперечное сечение проводника, имеет вид:

  • I = q/t, где t - время протекания заряда q.

Фактически, сила тока - величина заряда. Единицей ее измерения является Ампер (А), в отличие от Н.

Определение работы силы

Силовое воздействие на вещество сопровождается совершением работы. Работа силы - физическая величина, численно равная произведению силы на перемещение, пройденное под ее действием, и косинус угла между направлениями силы и перемещения.

Искомая работа силы, формула которой имеет вид A = FScosα, включает величину силы.

Действие тела сопровождается изменением скорости тела или деформацией, что говорит об одновременных изменениях энергии. Работа силы напрямую зависит от величины.

В физике очень часто используется понятие «сила»: сила тяготения, сила отталкивания, электромагнитная сила и т. д. Складывается обманчивое впечатление, что сила — это нечто, влияющее на объекты, и существующее само по себе.

Откуда же на самом деле берутся силы, и что это такое вообще?

Давайте рассмотрим это понятие на примере звука. Когда мы поём, мы можем варьировать силу издаваемого звука, т.е. громкость. Для этого мы увеличиваем скорость выдоха и сужаем пространство между голосовыми связками. Что при этом происходит? Увеличивается скорость изменения состояния голосовых связок. Голоса делят на низкие и высокие. А чем они отличаются друг от друга? Голос кажется низким, когда скорость изменения постепенно уменьшается, а высоким — когда наоборот увеличивается к концу выдоха.

По этому же принципу устроены все музыкальные инструменты. Все они позволяют варьировать соотношения инструмента таким образом, чтобы изменять скорость и направление его изменения, или же сочетать звуки с разными параметрами, как в струнных.

В любой природной системе происходят постоянные изменения состояния. Энергия, сила ассоциируются у нас с высокой скоростью изменения состояния, а покой, статичность — с низкой энергией, но высокой гравитацией.

Понятие силы необходимо нам в том случае, когда мы рассматриваем влияние одних объектов на другие. Но если мы рассматриваем систему в целом, то вместо силы мы говорим о скорости изменения состояния системы. Но что является причиной изменения скорости?

Любая система представляет собой колебательный процесс. Обычно, когда мы говорим о колебании, мы представляем себе изменение одной величины в пределах какого-то диапазона. Например, колебание гитарной струны — это её колебание вокруг центральной оси. Но это происходит лишь потому, что концы струны строго закреплены, что ограничивает её в пространстве.

Если же мы говорим о природной системе, то колебание в ней — это всегда изменение как минимум двух параметров. При этом физические параметры взаимосвязаны друг с другом таким образом, что увеличение одного ведет к уменьшению другого. Например, уменьшение давления ведет к увеличению объема, максимум электрического поля соответствует минимуму магнитного. Такая обратная циклическая связь способствует колебанию системы в рамках определенного значения, которое можно считать константой скорости.

Именно благодаря этой константе, мы всегда чувствуем то направление, которое есть в системе. Например, по короткому отрезку музыкального произведения мы чувствуем, каким будет её дальнейшее звучание. Мы можем уловить логику дальнейшего развития. С точки зрения математики это означает вычислить дифференциал — скорость и направление изменения системы в данный момент времени. Этим музыка и отличается от простого шума.

И тот факт, что это возможно, говорит о том, что мир в целом представляет собой единую систему, где все процессы связаны друг с другом. И все изменения скоростей в нем предсказуемы и логично взаимосвязаны.

ОПРЕДЕЛЕНИЕ

Сила – это векторная величина, являющаяся мерой действия на данное тело других тел или полей, в результате которого происходит изменение состояния данного тела. Под изменением состояния в данном случае понимают изменение или деформацию.

Понятие силы относится к двум телам. Всегда можно указать тело, на которое действует сила, и тело, со стороны которого она действует.

Сила характеризуется:

  • модулем;
  • направлением;
  • точкой приложения.

Модуль и направление силы не зависят от выбора .

Единица измерения силы в системе Си – 1 Ньютон .

В природе нет материальных тел, находящихся вне воздействия на них других тел, а, следовательно, все тела находятся под воздействием внешних или внутренних сил.

На тело одновременно может действовать несколько сил. В этом случае справедлив принцип независимости действия: действие каждой силы не зависит от присутствия или отсутствия других сил; совместное действие нескольких сил равно сумме независимых действий отдельных сил.

Равнодействующая сила

Для описания движения тела в этом случае пользуются понятием равнодействующей силы.

ОПРЕДЕЛЕНИЕ

Равнодействующая сила – это сила, действие которой заменяет действие всех сил, приложенных к телу. Или, другими словами, равнодействующая всех сил, приложенных к телу, равна векторной сумме этих сил (рис.1).

Рис.1. Определение равнодействующей сил

Так как движение тела всегда рассматривается в какой-либо системе координат, удобно рассматривать не саму силу, а ее проекции на координатные оси (рис.2, а). В зависимости от направления силы ее проекции могут быть как положительными (рис.2,б), так и отрицательными (рис.2,в).

Рис.2. Проекции силы на координатные оси: а) на плоскости; б) на прямой (проекция положительна);
в) на прямой (проекция отрицательна)

Рис.3. Примеры, иллюстрирующие векторное сложение сил

Мы часто наблюдаем примеры, иллюстрирующие векторное сложение сил: лампа висит на двух тросах (рис.3, а) – в этом случае равновесие достигается за счет того, что равнодействующая сил натяжения компенсируется весом лампы; брусок соскальзывает по наклонной плоскости (рис.3, б) – движение возникает за счет равнодействующей сил трения, тяжести и реакции опоры. Знаменитые строки из басни И.А. Крылова «а воз и ныне там!» — также иллюстрация равенства нулю равнодействующей трех сил (рис.3, в).

Примеры решения задач

ПРИМЕР 1

Задание На тело действуют две силы и . Определить модуль и направление равнодействующей этих сил, если: а) силы направлены в одну сторону; б) силы направлены в противоположные стороны; в) силы направлены перпендикулярно друг к другу.
Решение а) силы направлены в одну сторону;

Равнодействующая сил:

б) силы направлены в противоположные стороны;

Равнодействующая сил:

Спроектируем это равенство на координатную ось :

в) силы направлены перпендикулярно друг к другу;

Равнодействующая сил:

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации