Триангуляция Делоне Определение, применение, свойства, методы построения. Разработка и реализация алгоритмов трехмерной триангуляции сложных пространств.областей

Структура лекции Определения Определения Области применения Области применения Свойства триангуляции Делоне Свойства триангуляции Делоне Методы построения триангуляции Делоне Методы построения триангуляции Делоне Методы пошагового ввода Методы пошагового ввода Методы пошаговой выборки Методы пошаговой выборки Методы декомпозиции Методы декомпозиции Методы сканирования Методы сканирования Двухпроходные методы Двухпроходные методы




Триангуляция Триангуляция – планарный граф все внутренние области которого являются треугольниками. Триангуляция – планарный граф все внутренние области которого являются треугольниками. Термин «Триангуляция» - это Термин «Триангуляция» - это граф; граф; процесс построения графа. процесс построения графа. Задача триангуляции набора точек S – задача соединения всех точек набора S непересекающимися отрезками для получения графа триангуляции. Задача триангуляции набора точек S – задача соединения всех точек набора S непересекающимися отрезками для получения графа триангуляции. Определение триангуляции Набор точек S


Оптимальная триангуляция – триангуляция с минимальной суммой длин всех ребер графа. Оптимальная триангуляция – триангуляция с минимальной суммой длин всех ребер графа. ! Востребованная, но очень трудоемкая задача O(2 n) ! На практике используют аппроксимации (приближения к) оптимальной триангуляции: «Жадная» триангуляция O(N 2 *logN) «Жадная» триангуляция O(N 2 *logN) Триангуляция Делоне O(N*logN) Триангуляция Делоне O(N*logN) Определение оптимальной триангуляции


Триангуляция Делоне (DT(S)) – выпуклая триангуляция удовлетворяющая условию Делоне: Триангуляция Делоне (DT(S)) – выпуклая триангуляция удовлетворяющая условию Делоне: внутрь окружности описанной вокруг любого ее треугольника недолжна попадать ни одна из вершин графа. внутрь окружности описанной вокруг любого ее треугольника недолжна попадать ни одна из вершин графа. Определение триангуляции Делоне У словие Делоне выполняется У словие Делоне не выполняется Б.Н. Делоне ()


Применение триангуляции Делоне В других задачах ВГ В других задачах ВГ Минимальный остов набора точек Минимальный остов набора точек Построение буферных зон Построение буферных зон Построение диаграммы Вороного (зон близости) Построение диаграммы Вороного (зон близости) Нахождение максимальной пустой окружности Нахождение максимальной пустой окружности и др. и др. В приложениях в КГ, ГИС, ГМ в САПР В приложениях в КГ, ГИС, ГМ в САПР Полигональные модели поверхностей Полигональные модели поверхностей Рельефы в ГИС, скульптуры, пром.модели, модели в играх, Рельефы в ГИС, скульптуры, пром.модели, модели в играх, Численный анализ моделей Численный анализ моделей Изолинии, Изоклины, МКЭ. Изолинии, Изоклины, МКЭ.






Свойства любой выпуклой триангуляции 1. Для набора n точек из которых m - внутренние Количество треугольников триангуляции = n + m – 2 Количество треугольников триангуляции = n + m – 2 Количество ребер триангуляции 3n – 6 Количество ребер триангуляции 3n – 6Пример: Точек (n) – 13 Точек (n) – 13 Внутренних (m) – 4 Внутренних (m) – 4 Треугольников – 15 = Треугольников – 15 = Ребер – 26 3*13-6 = 33 Ребер – 26 3*13-6 = 33


Свойства триангуляции Делоне 2. Триангуляция Делоне обладает максимальной суммой минимальных углов всех треугольников среди всех возможных триангуляций. 3. Триангуляция Делоне обладает минимальной суммой радиусов окружностей, описанных около треугольников, среди всех возможных триангуляций. Триангуляция Делоне НЕ триангуляция Делоне


Методы построения триангуляции Делоне Методы пошагового ввода Методы пошагового ввода Итеративные алгоритмы () Итеративные алгоритмы () Методы пошаговой выборки Методы пошаговой выборки Алгоритмы прямого (пошагового) построения (3) Алгоритмы прямого (пошагового) построения (3) Методы декомпозиции Методы декомпозиции Алгоритмы слияния (2) Алгоритмы слияния (2) Методы сканирования Методы сканирования Итеративные алгоритмы с измененным порядком добавления точек (1.4) Итеративные алгоритмы с измененным порядком добавления точек (1.4) Двухпроходные алгоритмы (4) Двухпроходные алгоритмы (4)


Методы пошагового ввода Итеративные алгоритмы () Общая схема итеративных алгоритмов построения триангуляции Делоне 1. На первых трех точках построить один треугольник 2. Цикл по всем оставшимся точкам p i набора S 3. Найти ближайший к точке p i треугольник t j текущей триангуляции 4. Если точка p i снаружи треугольника t j, то построить треугольники к ближайшему ребру. 5. Если точка p i внутри треугольника t j, то разбить треугольник на три. 6. Если точка p i на ребре, то разбить прилегающие треугольники на пары. 7. Если условие Делоне для соседей нарушилось, то перестроить соседние треугольники. Варианты ускорения поиска треугольников: Индексирование треугольников (деревья) – O(log n) Индексирование треугольников (деревья) – O(log n) Кэширование треугольников (сетки) – O(с) Кэширование треугольников (сетки) – O(с)


Методы пошаговой выборки Алгоритмы прямого (пошагового) построения (3) Строить сразу нужные треугольники, не перестраивая что уже построено. Общая схема алгоритмов прямого построения триангуляции Делоне Удобно использовать стек еще необработанных ребер. 1. Найти любое ребро q выпуклой оболочки набора точек S. 2. Занести ребро q в стек необработанных ребер. 3. Цикл пока стек необработанных ребер не пуст. 4. Извлечь ребро v из стека. 5. Для ребра v найти точку p, удовлетворяющую условию Делоне (соседа Делоне) 6. Если сосед Делоне p найден, то 7. Построить треугольник от ребра v к точке p. 8. Занести новые ребра нового треугольника в стек необработанных ребер. Варианты ускорения поиска соседа Делоне: Индексирование точек k-D-деревом – O(log n) Индексирование точек k-D-деревом – O(log n) Клеточное индексирование точек – O(с) Клеточное индексирование точек – O(с)


Процесс работы жадного алгоритма триангуляции Делоне


Методы декомпозиции Алгоритмы слияния (2) Разбиение на подмножества, независимая обработка, слияние результатов. Общая схема алгоритмов слияния 0. Если точек в наборе S не более 3 шт, построить непосредственно иначе 1. Разбить набор точек S на примерно равные подмножества. 1. Разбить набор точек S на примерно равные подмножества. 2. Построение триангуляции для подмножеств. 2. Построение триангуляции для подмножеств. 3. Слияние полученных триангуляций в одну. 3. Слияние полученных триангуляций в одну. Способы разделения на подмножества Ортогональными прямыми Ортогональными прямыми По диаметру выпуклой оболочки По диаметру выпуклой оболочки Полосами Полосами


Алгоритмы слияния (2) Способы слияния триангуляций «Удаляй и строй» (проверка до построения) «Удаляй и строй» (проверка до построения) «Строи и перестраивай» (проверка после построения) «Строи и перестраивай» (проверка после построения) «Строй, перестраивая» (проверка во время построения) «Строй, перестраивая» (проверка во время построения)


Общая схема итеративных методов с измененным порядком добавления точек 1. Упорядочить точки (построить перечень точек событий) 2. Цикл сканирования по всем точкам-событиям 3. Для каждой точки p i построить треугольники к предыдущему треугольнику. 4. Если условие Делоне для соседей нарушилось, то перестроить соседние треугольники. Методы сканирования Итеративные алгоритмы с измененным порядком добавления точек (1.4)


Методы сканирования Способы упорядочивания точек событий Прямолинейное Прямолинейное Полярное (круговое, веерообразное) Полярное (круговое, веерообразное) Полосовое Полосовое Квадратное Квадратное По кривой Гильберта По кривой Гильберта По Z-коду По Z-коду Цели: Сразу строить максимум хороших треугольников Сразу строить максимум хороших треугольников Минимизировать число перестроений Минимизировать число перестроений




Сводные характеристики методов триангуляции Делоне Метод триангуляции Время в среднем Время в худшем Время сек / т Простотареализац. Методы пошагового ввода Методы пошагового ввода Итеративные алгоритмы () Итеративные алгоритмы ()O(n)- O(n 3/2) O(n 2) 1,5-9,2 2-5 Методы пошаговой выборки Методы пошаговой выборки Метод прямого построения (3) Метод прямого построения (3) O(n)- O(n 2) O(n 2) -2 Методы декомпозиции Методы декомпозиции Методы слияния (2) Методы слияния (2) O(n)- O(nlogn) O(nlogn)- O(n 2) 2,5-4,52-3 Методы сканирования Методы сканирования Итеративные с измененным порядком добавления точек (1.4) Итеративные с измененным порядком добавления точек (1.4)O(n) O(n 2) 1,9-5,34-5 Двухпроходные методы (4) Двухпроходные методы (4) O(n)- O(n 2) O(nlogn)- O(n 2) 2,2-15,41-5 Скворцов рекомендует: итеративный алгоритм с динамическим кэшированием


А сегодня о чем? О триангуляции Делоне! Определение Определение Области применения Области применения Свойства триангуляции Делоне Свойства триангуляции Делоне Методы построения триангуляции Делоне Методы построения триангуляции Делоне Методы пошагового ввода Методы пошагового ввода Методы пошаговой выборки Методы пошаговой выборки Методы декомпозиции Методы декомпозиции Методы сканирования Методы сканирования Двухпроходные методы Двухпроходные методы





Триангуляция представляет собой аппроксимацию поверхности моделируемого объекта треугольными пластинами, отстоящими от нее на расстоянии, не превышающем некоторой заданной величины 6. Все треугольные пластины должны стыковаться между собой. Их вершины лежат на поверхности. С набором треугольных пластин легче работать, чем с поверхностью общего вида. Треугольные пластины будем называть треугольниками. Для треугольника достаточно быстро вычисляются расстояние до заданной точки или точка пересечения с заданной прямой в пространстве. Триангуляция граней выполняется для визуального восприятия геометрической модели, поэтому стороны треугольников выбираются, такими, чтобы глаз не мог заметить изломы.

При отображении геометрических объектов по треугольникам на параметрических плоскостях поверхностей должна быть построена пространственная триангуляция граней тела путем вычисления массива точек в пространстве и массива нормалей к граням тела в этих точках по массиву двухмерных точек Для быстрого отображения тел их грани аппроксимируют треугольными пластинами, построенными на точках Нормали требуются для определения поведения световых лучей, взаимодействующих с гранями тела. Тоновые рисунки в предыдущих главах и в данной главе выполнены с использованием триангуляции.

Результатом триангуляции поверхности мы хотим иметь массив двухмерных точек на параметрической плоскости и массив троек целых чисел, являющихся номерами точек в первом упомянутом массиве. Таким образом, каждый треугольник будет представлен тремя номерами его вершин в массиве параметров. По каждой двухмерной точке параметрической области могут быть вычислены пространственная точка на поверхности и нормаль поверхности в ней. Пространственные точки и нормали могут храниться в массивах, аналогичных массиву двухмерных точек.

Остановимся на некоторых способах триангуляции. Для плоских поверхностей существуют экономичные методы триангуляции, в которых треугольники строятся на граничных точках поверхности и не требуется искать точки внутри параметрической области.

Триангуляция Делоне.

Рассмотрим некоторую область на плоскости. Область будем называть выпуклой, если при движении вдоль ее границы приходится поворачивать только в одну сторону (только влево или только вправо). Для триангуляции выпуклых плоских областей можно использовать алгоритм Делоне. Мы не сможем напрямую применить этот алгоритм для триангуляции поверхностей произвольной формы, но мы будем использовать его метод построения треугольников.

Рис. 9.7.1. Выпуклая область с заданными точками внутри

Пусть даны некоторая выпуклая двухмерная область, ограниченная замкнутой ломаной линией, и набор точек внутри этой области (рис. 9.7.1).

Требуется разбить указанную область на треугольники, вершинами которых являются заданные точки внутри области и вершины ограничивающей ее ломаной линии. Треугольники не должны накрывать друг друга, а их стороны могут пересекаться только в вершинах.

Можно построить несколько различных наборов треугольников, заполняющих указанную область. Во всех случаях число треугольников равно , где К - число вершин ограничивающей ломаной, I - число заданных точек внутри области.

Рис. 9.7.2. Выбор третьей точки алгоритма Делоне

Триангуляция области будет триангуляцией Делоне, если внутри описанной вокруг каждого треугольника окружности отсутствуют вершины других треугольников. Триангуляция Делоне строит треугольники по возможности близкие к равноугольным (не допускает построение неоправданно вытянутых треугольников).

Ее можно назвать сбалансированной. Триангуляция Делоне будет уникальной, если никакие четыре вершины не лежат на одной окружности.

Рассмотрим триангуляцию Делоне. Вершины ограничивающей область ломаной и заданные точки внутри области будем называть вершинами триангуляции. Стороны треугольников будем называть ребрами. Среди ребер выделим отрезки ограничивающей ломаной, которые будем называть граничными ребрами. Сориентируем все граничные ребра так, чтобы выпуклая область лежала слева от каждого ребра. Пусть требуется построить треугольник, стороной которого является граничное ребро АВ, показанное на рис. 9.7.2.

Через вершины А, В и любую, не лежащую с ними на одной прямой, вершину можно провести окружность. В качестве третьей вершины треугольника выберем вершину V, соответствующая которой окружность, не содержит других вершин с той же стороны относительно отрезка АВ, с которой лежит точка V. Для граничного ребра в общем случае можно найти одну такую вершину. Будем называть ее ближайшей. Центр окружности, проходящей через точки А, В и V, лежит на пересечении перпендикуляров к серединам отрезков АВ, BV и VА. Положение центра окружности будем характеризовать параметром t отрезка MN, перпендикулярного ребру АВ, равного с ним по длине и проходящего через середину ребра АВ.

Рис. 9.7.3. Процесс триангуляции Делоне

Для всех вершин, лежащих слева от отрезка АВ, ближайшая вершина имеет наименьший параметр t. Соответствующая ближайшей вершине окружность не содержит других вершин слева от отрезка АВ. Пусть вершины А, В и V описываются двухмерными радиус-векторами соответственно. Радиус-векторы середин отрезков АВ и BV будут равны

Значение параметра t прямой , соответствующее положению на ней центра окружности, проходящей через точки А, В и V, равно

Для ближайшей слева к отрезку АВ вершины параметр t имеет минимальное значение.

Сориентируем все граничные ребра так, чтобы подлежащая триангуляции область лежала слева от каждого из них. Построение треугольников начнем с любого граничного ребра. Найдем для него ближайшую вершину, соответствующая окружность которой не содержит других вершин. Пусть для граничного ребра АВ найдена ближайшая вершина V. Тогда построим треугольник ABV и переведем ребро АВ в разряд неактивных. Неактивными будем называть ребра и вершины, которые не участвуют в алгоритме триангуляции. Если среди граничных ребер отсутствует ребро BV, то на отрезке VB построим новое граничное ребро. Если же среди граничных ребер есть ребро BV, то переведем его и вершину В в разряд неактивных. Если среди граничных ребер отсутствует ребро VA, то на отрезке AV построим новое граничное ребро. Если же среди граничных ребер есть ребро VA, то переведем его и вершину А в разряд неактивных. Процесс триангуляции показан на рис. 9.7.3.

Рис. 9.7.4. Триангуляция Делоне

Триангуляцию закончим, когда все вершины и ребра станут неактивными. Результат триангуляции заданной области приведен на рис. 9.7.4.

Триангуляция методом коррекции.

Рассмотрим триангуляцию некоторой поверхности с прямоугольной областью определения параметров Разобьем область определения параметров поверхности на прямоугольные ячейки двухмерными линиями Эти линии образуют прямоугольную сетку. Параметрические расстояния между соседними линиями в соответствии с формулой (9.4.7) возьмем равными

Параметрические расстояния между соседними линиями в соответствии с формулой (9.4.8) возьмем равными

Построив диагонали во всех прямоугольных ячейках, мы получим триангуляцию поверхности (получим набор треугольников, удовлетворяющий предъявленным требованиям). На рис. 9.7.5 приведена триангуляция поверхности вращения описанным способом.

Рассмотрим триангуляцию поверхности с произвольной границей. Метод триангуляции построим на коррекции граничными контурами описанной выше триангуляции поверхности с прямоугольной областью определения параметров.

Рис. 9.7.5. Триангуляция поверхности с прямоугольной областью определения параметров

Пусть граница поверхности в области определения параметров описывается несколькими непересекающимися двухмерными контурами (2.12.7). Один из контуров является внешним и содержит остальные контуры. За положительное направление для каждого контура примем направление, при движении вдоль которого область определения поверхности находится всегда слева от контура, если смотреть навстречу нормали поверхности. Построим полигоны в положительном направлении граничных контуров области определения поверхности. Для построения граничных полигонов нужно пройти по граничным контурам поверхности с некоторым переменным шагом и заполнить массив двухмерных точек, координатами которых являются параметры поверхности. Полигон будем строить из точек на параметрической плоскости, но шаг при переходе от одной точке к другой будем определять из пространственной геометрии, а именно, из условия, чтобы прогиб дуги кривой между соседними точками был бы не более заданной величины . Параметрические шаги построения полигона для кривой граничного контура поверхности вычислим по формуле (9.4.4).

Каждый полигон состоит из упорядоченного набора двухмерных точек Каждый участок полигона можно рассматривать как отрезок двухмерной прямой линии, построенный на двух соседних точках. Будем использовать такие участки в качестве граничных ребер, а точки полигонов, на которых базируются ребра, будем использовать в качестве вершин триангуляции. Так как область определения параметров поверхности лежит слева от граничных полигонов, то при построении треугольников для каждого граничного ребра триангуляции следует искать третью вершину треугольника слева от ребра.

Определим, какие узлы лежат внутри граничных полигонов, а какие лежат на границе или вне области определения поверхности. Используя эту информацию, рассортируем прямоугольные ячейки сетки на две группы. К первой группе отнесем ячейки, целиком лежащие внутри области определения параметров поверхности (ячейки не должны касаться граничных полигонов). Ко второй группе отнесем остальные ячейки (лежащие вне области определения поверхности или пересекаемые граничными полигонами).

Рис. 9.7.6. Незаконченная триангуляция поверхности

Внутри каждой ячейки первой группы с помощью диагонали построим два треугольника. Тем самым мы получим незаконченную триангуляцию. Пример построения треугольников в ячейках первой группы для ограниченной контурами поверхности вращения приведен на рис. 9.7.6.

На непересеченных сторонах ячеек второй группы построим граничные ребра и направим их так, чтобы соответствующая ячейка находилась слева от ребра. Вокруг ячеек первой группы построим замкнутую ломаную линию (возможно несколько замкнутых линий) так, чтобы при движении по ней не разбитая на треугольники часть области лежала слева, если смотреть навстречу нормали поверхности. Прямолинейные участки этой ломаной линии также будем использовать в качестве граничных ребер. Мы будем считать все ребра равноправными. Для завершения триангуляции нам необходимо построить треугольники между граничными ребрами. Для каждого ребра будем искать вершину, которая лежит слева от него и может быть использована для построения треугольника. Поиск вершины будем осуществлять только среди тех вершин, которые лежат в одной ячейке с ребром. Для выбора вершины используем метод Делоне, описанный выше, и проиллюстрированный на рис. 9.7.2. Если такая вершина найдена, то следует проверить, не пересекаются ли два новых ребра треугольника с каким-либо граничным ребром. Пусть для граничного ребра АВ найдена ближайшая вершина V и проверено, что отрезки BV и VА не пересекают другие граничные ребра. Тогда построим треугольник ABV и переведем ребро АВ в разряд неактивных. Если среди граничных ребер отсутствует ребро BV, то на отрезке VВ построим новое граничное ребро, если же среди граничных ребер есть ребро BV, то переведем его и вершину В в разряд неактивных. Если среди граничных ребер отсутствует ребро VA, то на отрезке AV построим новое граничное ребро, если же среди граничных ребер есть ребро VA, то переведем его и вершину А в разряд неактивных.

Если отрезок или VA пересекает другие граничные ребра, то перейдем к поиску ближайшей вершины для другого граничного ребра. Триангуляция будет закончена после перевода всех ребер и вершин в разряд неактивных.

Рис. 9.7.7. Триангуляция методом коррекции

На рис. 9.7.7 приведена триангуляция поверхности методом коррекции треугольников в ячейках, пересеченных граничными контурами. На рис. 9.7.8 с помощью полученной триангуляции отображена сама поверхность.

Если граничные полигоны и поверхность обладают некоторой симметрией, то триангуляция методом коррекции будет обладать аналогичной симметрией.

Триангуляция методом поглощения.

Рассмотрим еще один метод триангуляции. По скорости он уступает триангуляции Делоне и ее модификациям. Для начала процедуры триангуляции необходимо представить границу поверхности в виде замкнутых полигонов. В процессе триангуляции нам потребуется определять шаги по параметрам поверхности . При известном направлении движения эти шаги определяются формулами (9.4.6). Приближенно шаги по параметрам поверхности можно найти следующим образом. Определим область на плоскости параметров вокруг некоторой точки таким образом, чтобы любой пространственный отрезок из точки в точку этой области отстоял бы от поверхности не дальше заданной величины S.

Для этого вычислим допустимые приращения параметров вдоль координатных линий

где - коэффициенты первой и второй квадратичных форм поверхности в точке . За границу искомой области примем эллипс с центром в точке и полуосями . Этот эллипс имеет уравнение

Если требуется на плоскости найти точку рядом с точкой в направлении, заданном углом с осью и, то ее параметрами будут

Сначала рассмотрим более простой случай, когда область параметров поверхности ограничена одним внешним контуром. Аппроксимируем границу поверхности замкнутым полигоном на параметрической области. При построении триангуляции будем использовать рабочий полигон, за который в данном случае примем полигон внешнего контура. Точки полигона занесем в результирующий массив двухмерных точек. Треугольники будем строить от края рабочего полигона, сужая его до тех пор, пока в рабочем полигоне не останется всего три точки.

Найдем в рабочем полигоне вершину, в которой он поворачивает внутрь области. Такая точка всегда существует и угол поворота в ней меньше . Обозначим эту точку через О, а ее параметры - через Около этой точки построим один или два треугольника в зависимости от угла поворота. Если угол меньше то построим один треугольник на этих трех точках (рис. 9.7.9). В противном случае построим два треугольника на данной, двух соседних и одной новой точках (рис. 9.7.11). Новая точка обозначена через Р. Точку Р будем искать на диагонали параллелограмма В ОС Р. Если вершина параллелограмма лежит внутри эллипса (рис. 9.7.10), то примем ее за точку Р. В противном случае за точку Р примем пересечение эллипса и диагонали параллелограмма. В последнем случае совсем не обязательно искать пересечение эллипса и отрезка.

Координаты точки Р определяются через координаты точек О ВС

Угол отрезка ОР с горизонталью определяется равенством

(9.7.8)

Эти данные позволяют определить положение точки Р относительно эллипса (9.7.5).

В случае, показанном на рис. 9.7.9, построим треугольник (запомним номера его вершин) и в рабочем полигоне удалим точку О. В случае, показанном на рис. 9.7.11, построим два треугольника и в рабочем полигоне точку О заменим точкой Р и поместим последнюю в результирующий массив точек. На рис. 9.7.12 приведен полигон, полученный после построения двух треугольников и ликвидации точки О. В обоих случаях точка О будет удалена из рабочего полигона и рабочий полигон сузится. Заметим, что треугольники можно строить только тогда, когда рабочий полигон после сужения не будет сам себя пересекать.

Рис. 9.7.9. Построение треугольника

Рис. 9.7.10. Результирующий полигон

Рис. 9.7.11. Построение двух треугольников

Рис. 9.7.12. Результирующий полигон

Такие ситуации показаны на рис. 9.7.13. Они могут возникнуть, когда стороны построенных треугольников пересекут несмежные с ними стороны рабочего полигона. Перед построением нового треугольника как в случае, показанном на рис. 9.7.9, так и в случае, показанном на рис. 9.7.11, должна быть выполнена проверка на отсутствие самопересечения результирующего полигона.

Более того, при определении положения точки Р важно, чтобы она находилась на достаточном расстоянии от других точек рабочего полигона и не подходила близко к отрезкам, соединяющим точки полигона. Иначе могут возникнуть трудности в дальнейшем при построении треугольников. Поэтому прежде, чем сузить рабочий полигон, следует проверить на самопересечение результирующий полигон. Если около точки О нельзя построить треугольник (треугольники), то вместо нее следует найти другую точку, в которой полигон более, чем в других, заворачивает внутрь контура, и выполнить в ней описанные действия.

Далее с измененным рабочим полигоном выполним те же действия, которые мы только что описали. Найдем в рабочем полигоне точку, в которой он более, чем в других, точках поворачивает внутрь области, выполним проверку на возможность сужения в ней полигона путем построения одного или двух треугольников и сузим полигон.

Рис. 9.7.13. В данном углу строить треугольники нельзя

Продолжая этот процесс, мы будем расширять массив двухмерных точек и массив треугольников, и одновременно мы будем сужать рабочий полигон, уменьшая охватываемую им площадь и число его точек. На некотором этапе этих действий мы получим рабочий полигон, состоящий из трех точек. Построим на этих точках последний треугольник, ликвидируем рабочий полигон и закончим триангуляцию. В описываемом способе триангуляции область, ограниченная рабочим полигоном, как бы ликвидируется путем отрезания от нее треугольников.

Рассмотрим общий случай, когда область параметров поверхности ограничена одним внешним контуром и несколькими внутренними контурами, целиком лежащими внутри внешнего контура. Аппроксимируем границу поверхности замкнутыми полигонами на параметрической области. Для каждого контура построим свой полигон. Так же как и для контуров, для полигонов, построенных на них, должно быть выполнено правило их взаимной ориентации. Ориентация внутренних полигонов должна быть противоположной ориентации внешнего полигона. Построение триангуляции начнем с полигона внешнего контура. Положим его точки в результирующий массив двухмерных точек, а сам полигон сделаем рабочим.

Построение треугольников выполним так же, как и в случае односвязной области. Найдем в рабочем полигоне точку О, выполним проверку на возможность сужения в ней рабочего полигона и сузим полигон. При наличии внутренних контуров усложняется проверка возможности сужения рабочего полигона в выбранной точке. Кроме описанных проверок на пересечение сторон треугольников со сторонами рабочего полигона нужно выполнить проверку на пересечение сторон треугольников со сторонами всех внутренних полигонов.

Пусть мы проверяем возможность построения двух треугольников в точке О (рис. 9.7.11), и обнаружили, что новая точка Р, будучи построенной, попадет внутрь одного из внутренних полигонов или окажется в недопустимой близости от его отрезков. В этом случае мы не будем строить точку Р, а вместо этого включим в рабочий полигон данный внутренний полигон, построив два треугольника, показанных на рис. 9.7.14.

Для того чтобы точки одного из внутренних полигонов включить в рабочий полигон, найдем среди точек внутреннего полигона точку, ближайшую к точке С (смежную с точкой О) рабочего полигона.

Построим треугольники на точках OCF и CEF и между точками О и С рабочего полигона вставим точки внутреннего полигона, начиная с точки F и кончая точкой Е. Тем самым мы разорвем рабочий полигон на отрезке ОС, разорвем внутренний полигон на отрезке EF и объединим их отрезками OF и ЕС.

Рис. 9.7.14. Построение двух треугольников

Рис. 9.7.15. Слияние внешнего и внутреннего полигонов

Результат слияния приведен на рис. 9.7.15. Конечно, перед объединением внешнего и внутреннего полигонов должны быть выполнены проверки на корректность этой операции.

Далее будем продолжать сужать рабочий полигон описанным способом до тех пор, пока не окажемся в непосредственной близости с другим внутренним полигоном и не включим его в рабочий полигон. В итоге, все внутренние полигоны будут включены в рабочий полигон, который должен быть сужен до последних трех точек. В результате, вся многосвязная область определения параметров поверхности будет покрыта треугольниками.

Рис. 9.7.16. В данном углу строить треугольники нельзя

Возможны ситуации, когда нельзя построить ни одного треугольника на заданных полигонах. На рис. 9.7.16 приведена область ограниченная двумя полигонами, каждый из которых состоит из четырех отрезков. Для внешнего полигона мы не можем продолжить триангуляцию, так как мешает внутренний полигон. В такой случае найдем две соседние точки В и С полигона, для которых можно построить треугольник ВСР. Точка Р проецируется на середину стороны ВС и находится на таком расстоянии от нее, чтобы новый треугольник не пересекал полигоны.

Другие способы триангуляции.

Существуют и другие способы триангуляции. Например, после построения полигонов внешнего и внутренних контуров области определения поверхности может быть выбрана иная стратегия построения треугольников. В другом варианте можно перед началом триангуляции объединить внешний и внутренние полигоны в один полигон. Можно внутри области определения параметров по определенному алгоритму «набросать» точки и по ним и точкам полигонов граничных контуров выполнить триангуляцию Делоне. Существуют алгоритмы, строящие сначала крупные треугольники, а затем делящие их до приемлемых размеров.

Триангуляция тела.

Триангуляция тела представляет собой совокупность треугольников, полученных путем триангуляции поверхностей его граней. Триангуляция отдельных поверхностей отличается от триангуляции граней тела тем, что в последнем случае должны быть согласованы граничные полигоны для смежных граней (рис. 9.7.17).

Рис. 9.7.17. Согласованность граничных полигонов граней тела

Участки полигонов смежных граней, проходящие по общим ребрам, будут согласованными, если их точки совпадают в пространстве.

Применение триангуляции.

Построенные в результате триангуляции треугольники используются для получения тоновых изображений. На рис. 9.7.18 и 9.7.19 приведены триангуляции грани листового тела, тоновое изображение которого показано на рис. 6.5.1.

Рис. 9.7.18. Триангуляция грани тела методом коррекции

Разбиение области определения параметров поверхности на треугольники может быть использовано в интегралах (8.6.2), (8.6.3), (8.6.12), (8.7.17)-(8.7.22) при вычислении геометрических характеристик тел. При численном интегрировании параметрический шаг для кривых следует вычислять по формуле (8.11.5), а для поверхностей параметрические шаги следует вычислять по формулам (8.11.1) и (8.11.2).

GRID- модели – модели регулярных ячеек.

Пусть введена система координат
ии
. Пользователь задает
и шаги дискретизации
.


,

- физические координаты точки.

Вычисляем
и
,
- разрядная сетка.

- квантованные значения. Реальные:

- параметр алгоритма – количество точек, - вес. Чем ближе точка, тем больше вес.

- степень расстояния (1 или 2).

Нормировочный коэффициент:

Чем ближе к 1, тем больше учитываются точки с большим весом.

Это метод IDW – долгий, для каждой т. необходимо найти соседей. Набор соседей может быть эффективно найден - ближайшим. Каждая из точек продуцирует «колышек» определенной высоты. От нерегулярности постановок точки многое зависит, для этого берут
или
т.е. разделяют на сектора и в окрестности точки строим.

Преимущество – простота

Недостаток:


------Билет 14. Tin-модель. Алгоритмы триангуляции Делоне------

1) Триангуляционные (tin).

Триангуляция – построение функции в виде совокупности кусочно - линейной функции

Триангуляция – интерполяция внутри выпуклой области.

Триангуляция – планарный граф, все внутренние ребра которого – треугольники; способ представления пространства в виде примыкающих друг к другу треугольников без перекрытий. На наборе точек триангуляция строится несколькими способами.

Нужен алгоритм для построения оптимальной триангуляции.

Плоскость, проходящая через 3 точки.

1) Найдем треугольник, который
;

2)
- строим уравнение плоскости.

Чтобы проверить находятся ли точки внутри треугольника или нет, необходимо подставить значение в уравнение линий – ребер треугольника. Если все 3 уравнения > 0, то внутри.

Структура представления:

Каждая триангуляция содержит одинаковое количество треугольников.

, где – количество внутренних точек,
– количество точек.

Жадный триангуляция.

Все точки соединяем ребрами, выбираем минимум, добавляем в триангуляцию. Далее берем следующий минимум, не пересекающийся с предыдущими и т.д. В результате получена жадная триангуляция.

Триангуляция Делоне.

Внутрь окружности, описанной вокруг любого треугольника, не попадают точки других треугольников. Строится единственным образом.

Флипом называется переброска ребер. Она позволяет перейти от обычной триангуляции к триангуляции Делоне. Чтобы проверить принадлежность точки к окружности: подставить, если < R, то внутри.

Условие Делоне.

Уравнение окружности, проходящей через три точки:

Если меньше нуля, то внешняя, иначе – внутренняя.

–условие Делоне.

Алгоритм построения триангуляции Делоне:

1) Подследственного добавления точек – простой итеративный алгоритм:

Есть набор
добавляем в треугольник, осуществляется построение
разбиение треугольника
перестроение. На нулевом этапе добавляем 3-4 фиктивные точки, которые заведомо покрывают наш конверт, все точки внутри. После кидаем точку, смотрим в какой треугольник попала, разбиваем на 3, для каждого треугольника проверяем условие Делоне и осуществляем флип переброску ребер. Среднее количество перестроений равно трем.

Теоретическая сложность

2) Методы ускорения. Основан на статистически зависимых точках. Затравочный треугольник – треугольник в который попала предыдущая точка. Затем соединяем две точки – предыдущую и новую.

Перемещаемся из первой точки в другую.

20 августа 2012 в 22:41

Оптимизация алгоритма проверки условия Делоне через уравнение описанной окружности и его применение

Расскажу секрет о том, как быстро проверить выполнение условия Делоне для двух треугольников.
Собственно сама оптимизация описана немного ниже(см.«Оптимизация алгоритма проверки условия Делоне через уравнение описанной окружности»), но расскажу обо всем по порядку.

В моем случае триангуляция применяется в трассировке изображения, для разбиения плоскости на примитивные сектора (треугольники). Как известно, она делится также на несколько этапов: корректировка, выявление границ, обход границ, заметание контуров. Это в самом общем виде. Я бы хотел остановиться, думаю, на самом сложном этапе: заметание плоскости.

На входе
После обнаружения и обхода границ на выходе я получил множество внешних контуров. Каждые соприкасающиеся контура имеют разные цвета. Внутри каждого такого контура содержится также известное кол-во внутренних контуров.
Таким образом, с точки зрения «заметания плоскости», если рассматривать внешние контура отдельно, имеем множество точек, каждая из которых имеет по одному соседу справа и слева. Т.е. все точки замкнуты в цепи, нет ни одной одиночной «висячей» точки, а так же в каждой из цепей содержится не менее 3-ех точек (Рисунок 1).

Рисунок 1

Что надо сделать
Нужно заметать фигуру треугольниками.
Поиски
Прочитав книгу не нашел ни одного (хотя бы одного) хоть сколько нибудь подходящего к моему случаю способа построения триангуляции Делоне. Искать другие книги не стал. Да и этой хватило, она привела мысли моей головы в порядок. В итоге изобрел свой «велосипед».
Алгоритм
1) Допустим, для начала, что в рассматриваемой фигуре всего одна последовательность. Тогда все сводится к последовательному забиранию треугольников. Берем любую точку и пытаемся построить треугольник с соседними точками. Если треугольник построить не получилось (линия связывающая эти две точки, пересекается с уже построенными или линия проходит в зоне отчуждения (Рисунок 2), двигаемся к соседней точке, допустим вправо. Когда очередной треугольник найден, заносим его в список (Рисунок 3), а точку из которой он строился удаляем (Рисунок 4).


Рисунок 2

Рисунок 3

Рисунок 4

Еще одно но: при сохранении очередного треугольника необходимо записывать вершины в обходе по часовой стрелке (в правой системе координат). Это пригодится в дальнейшем для уменьшения вычислительных ресурсов.

2) Повторяем шаг 1 пока не заметаем всю плоскость.

3) Если последовательностей несколько, т.е. одна, а внутри её еще одна или более внутренних контуров (Рисунок 1). Тут необходимо рассмотреть каждую последовательность отдельно. Возьмем очередной внутренний контур. Из одного внешнего и одного внутреннего сделаем два одиночных контура. Для этого нужно найти два «порта» из одного контура в другой. Условие для «портов»: они не должны пересекаться между собой(не должны соприкасаться даже концами), не должны пересекаться с линиями контуров (Рисунок 5).


Рисунок 5

Рисунок 6
4) Далее следует ввести поочередно все внутренние последовательности в уже образованные, отделенные друг от друга (пункт 3) последовательности. Сливать нужно с той, которая содержит новую. По определению ни одна внутренняя последовательность не касается и не пересекается с другими(как одной внешней, так и всеми возможными внутренними), так что все пройдет гладко.
Найдя порты (Рисунок 6) легко построить новые последовательности и обойти их пунктами 1 и 2 текущего алгоритма (Рисунок 7).

Рисунок 7

5) После 4-его этапа имеем список треугольников(Рисунок 8). Как бы с задачей уже справились, но осталось сделать картинку красивой: проверить выполнение условия Делоне (Рисунок 9).

Рисунок 8

Рисунок 9

6) Забегая вперед расскажу про шестой пункт. Он заключается в последовательном прогоне по списку полученных треугольников пунктом №5. Сначала метим все треугольники «грязными». В каждом цикле проверяем для каждого треугольника условие Делоне. Если условие не выполняется, то делаем перестроение и помечаем соседей и текущий треугольник «грязными». Если условие выполняется, то метим его чистым. В моей реализации алгоритма, каждый треугольник имеет ссылку на соседей. В этом случае 6-ой пункт работает наиболее быстро.

Подробнее о пятом этапе
Сейчас, на сколько я знаю, существуют два возможных способа определить удовлетворяют треугольники условию Делоне или нет: 1) Проверить сумму противоположных углов. Она должны быть меньше 180. 2) Вычислить центр описанной окружности и посчитать расстояние до 4-ой точки. Всем известно, условие Делоне выполняется, если точка находится за пределами описанной окружности.

Мощность вычислений №1: 10 операций умножения/деления и 13 операций сложения/вычитания.
Мощность вычислений №2: 29 операций умножения/деления и 24 операций сложения/вычитания.

С точки зрения вычислительной мощности, которая высчитывается к примеру в книге , выгоднее вариант №1. Его и реализовал, если бы не… (Рисунок 10). Как оказалось после постановки данного метода на «конвейер», получилась неопределенность. Это вариант, когда сам угол А больше 180 градусов. Он рассматривается в книге как один из отдельных частных методов. А с этим пропадает вся его элегантность, прозрачность и производительность. А так же в последствии оказалось, что метод №2 можно очень существенно оптимизировать.


Рисунок 10

Оптимизация алгоритма проверки условия Делоне через уравнение описанной окружности

Далее чистая математика.

Итак имеем:
Проверка условия для точки M(X, Y) уравнением окружности, проходящей через точки A(x1, y1), B(x2, y2), C(x3, y3), можно записать в виде:

(a ⋅ (X^2 + Y^ 2) − b ⋅ X + c ⋅ Y − d) ⋅ sign a ≥ 0

Подробности можно взять в великолепной книге . (Нет, не я ее автор)
Итак, sign a - это знак направления обхода, с самого начала я строил треугольники по часовой стрелке, так что его можно опустить (он равен единице).

A(x1 - X, y1 - Y), B(x2 - X, y2 - Y), B(x3 - X, y3 - Y);

D >= 0

Рисунок 11

Просто не правда ли?

Согласно книге, опять же,

(x1^2 + y1^2)*(y2*x3 - x2*y3) + (x2^2 + y2^2)*(x1*y3 - y1*x3) + (x3^2 + y3^2)*(y1*x2 - x1*y2) <= 0

Имеем: 15 операций умножения/деления и 14 операций сложения/вычитания.

Спасибо за внимание. Жду критики.

Список используемой литературы
1. Скворцов А.В. Триангуляция Делоне и её применение. – Томск: Изд-во Том. ун-та, 2002. – 128 с. ISBN 5-7511-1501-5

Для количественной оценки качества построенной триангуляции определим два типа критериев топологический и геометрически .

Топологический критерий основан на ближайших соседях точки из множества. В идеальном случае точка имеет для двумерной области 6 соседей, для трехмерной 12 соседей. Топологическую оценку получим с помощью формулы (1), где - общее количество точек в области, - степень или количество соседних точек с вязаных с внутренней точкой.

Геометрический критерий основан на разнице вписанной и описанной окружности вокруг расчетного треугольного элемента. Геометрическую оценку получим с помощью формулы (2), где - количество треугольников, - радиус вписанной окружности, - радиус описанной окружности.

Алгоритмы построения триангуляции

Для построения триангуляции существует большое количество алгоритмов. Они различаются между собой трудоёмкостью, сложностью реализации на ЭВМ, подходами к построению. Подробнее об алгоритмах можно узнать в книге А.В. Скворцова . Рассмотрим некоторые алгоритмы.

Одним из первых был предложен жадный алгоритм построения триангуляции. Триангуляция Делоне называется жадной, если она построена с помощью жадного алгоритма. Трудоемкость работы жадного алгоритма при некоторых его улучшениях составляет . В связи со столь большой трудоемкостью на практике он почти не применяется. Рассмотрим алгоритм по шагам:

Шаг 1. Генерируется список всех возможных отрезков, соединяющих пары исходных точек, и он сортируется по длинам отрезков.

Шаг 2. Начиная с самого короткого, последовательно выполняется вставка отрезков в триангуляцию. Если отрезок не пересекается с другими ранее вставленными отрезками, то он вставляется, иначе он отбрасывается.

Заметим, что если все возможные отрезки имеют разную длину, то результат работы этого алгоритма однозначен, иначе он зависит от порядка вставки отрезков одинаковой длины.

Итеративный алгоритм имеют в своей основе очень простую идею последовательного добавления точек в частично построенную триангуляцию Делоне. Сложность данного алгоритма складывается из трудоёмкости поиска треугольника, в который на очередном шаге добавляется точка, трудоёмкости построения новых треугольников, а также трудоёмкости соответствующих перестроений структуры триангуляции в результате неудовлетворительных проверок пар соседних треугольников полученной триангуляции на выполнение условия Делоне. Рассмотрим алгоритм по шагам:

Шаг 1. На первых трех исходных точках строим один треугольник.

Шаг 2. В цикле по для всех остальных точек выполняем шаги 3-5.

Шаг 3. Очередная -я точка добавляется в уже построенную структуру триангуляции следующим образом. Вначале производится локализация точки, т.е. находится треугольник (построенный ранее), в который попадает очередная точка. Либо, если точка не попадает внутрь триангуляции, находится треугольник на границе триангуляции, ближайший к очередной точке.

Шаг 4. Если точка попала на ранее вставленный узел триангуляции, то такая точка обычно отбрасывается, иначе точка вставляется в триангуляцию в виде нового узла. При этом если точка попала на некоторое ребро, то оно разбивается на два новых, а оба смежных с ребром треугольника также делятся на два меньших. Если точка попала строго внутрь какого-нибудь треугольника, он разбивается на три новых. Если точка попала вне триангуляции, то строится один или более треугольников.

Шаг 5. Проводятся локальные проверки вновь полученных треугольников на соответствие условию Делоне и выполняются необходимые перестроения.

При построении новых треугольников возможны две ситуации, когда добавляемая точка попадает либо внутрь триангуляции, либо вне её. В первом случае строятся новые треугольники и число выполняемых алгоритмом действий фиксировано. Во втором необходимо построение дополнительных внешних к текущей триангуляции треугольников, причём их количество может в худшем случае равняться? 3. Однако за все шаги работы алгоритма будет добавлено не более треугольников, где - общее число исходных точек. Поэтому в обоих случаях общее затрачиваемое время на построение треугольников составляет.

Цепной алгоритм один из первых эффективных алгоритмов построения триангуляции основан на процедуре регуляризации планарного графа и триангуляции монотонных многоугольников . Трудоемкость этого алгоритма составляет, где - количество исходных отрезков. Рассмотрим алгоритм по шагам:

Шаг 1. Из множества исходных структурных отрезков формируем связанный планарный граф (Рисунок 4,а).

Шаг 2. Выполняется регуляризация графа, т.е. добавляются новые рёбра, не пересекающие другие, так что каждая вершина графа становится смежной хотя бы с одной вершиной выше неё и одной ниже. Регуляризация выполняется в два прохода с помощью вертикального плоского заметания . В первом проходе снизу вверх последовательно находятся все вершины, из которых не выходят рёбра, ведущие вверх. Например, на (Рисунок 4,б) такой является вершина B. Проводя горизонтальную линию, обнаруживаем ближайшие пересекаемые ею слева и справа рёбра графа AD и EF. Затем в четырехугольнике DEHG находим самую низкую вершину и проводим в неё ребро из B. Аналогично выполняется второй проход сверху вниз (Рисунок 4,в). В результате работы этого шага каждая область планарного графа становится монотонным многоугольником.

Шаг 3. Каждую область графа необходимо разбить на треугольники. Для этого можно воспользоваться алгоритмом невыпуклого слияния двух триангуляций (Рисунок 4,г).


Рисунок 4. Схема работы цепного алгоритма триангуляции: а) - исходные отрезки; б - проход снизу вверх регуляризации графа; в) - проход сверху вниз; г) - триангуляция монотонных многоугольников

Для реализации цепного алгоритма лучше всего использовать структуры данных, в которых рёбра представляются в явном виде, например «Двойные рёбра» или «Узлы, рёбра и треугольники» .

Недостатком цепного алгоритма является то, что о форме получаемой триангуляции ничего заранее сказать нельзя. Это не оптимальная триангуляция, не жадная и не триангуляция Делоне с ограничениями. В цепном алгоритме могут получаться очень длинные вытянутые треугольники.

Для улучшения качества полученной триангуляции можно проверить все пары смежных треугольников, не разделенных структурным ребром, на выполнение условия Делоне и при необходимости произвести перестроения. В результате будет получена триангуляция Делоне с ограничениями.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации