Заземление вл 10 кв. Требования к заземляющим устройствам

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

ЗАЗЕМЛЕНИЕ ЖЕЛЕЗОБЕТОННЫХ ОПОР ЛИНИИ ЭЛЕКТРОСНАБЖЕНИЯ ВЛ-10 кВ

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Типовая технологическая карта (именуемая далее по тексту ТТК) - комплексный организационно-технологический документ, разработанный на основе методов научной организации труда для выполнения технологического процесса и определяющий состав производственных операций с применением наиболее современных средств механизации и способов выполнения работ по определённо заданной технологии. ТТК предназначена для использования при разработке Проектов производства работ (ППР), Проектов организации строительства (ПОС) и другой организационно-технологической документации строительными подразделениями. ТТК является составной частью Проектов производства работ (далее по тексту - ППР) и используется в составе ППР согласно МДС 12-81.2007 .

1.2. В настоящей ТТК приведены указания по организации и технологии производства работ по заземлению железобетонных опор воздушной линии электроснабжения ВЛ-10 кВ.

Определён состав производственных операций, требования к контролю качества и приемке работ, плановая трудоемкость работ, трудовые, производственные и материальные ресурсы, мероприятия по промышленной безопасности и охране труда.

1.3. Нормативной базой для разработки технологической карты являются:

- типовые чертежи;

- строительные нормы и правила (СНиП, СН, СП);

- заводские инструкции и технические условия (ТУ);

- нормы и расценки на строительно-монтажные работы (ГЭСН-2001 ЕНиР);

- производственные нормы расхода материалов (НПРМ);

- местные прогрессивные нормы и расценки, нормы затрат труда, нормы расхода материально-технических ресурсов.

1.4. Цель создания ТТК - дать рекомендуемую нормативными документами схему технологического процесса при производстве монтажных работ по заземлению железобетонных опор воздушной линии электроснабжения ВЛ-10 кВ, с целью обеспечения их высокого качества, а также:

- снижение себестоимости работ;

- сокращение продолжительности строительства;

- обеспечение безопасности выполняемых работ;

- организации ритмичной работы;

- рациональное использование трудовых ресурсов и машин;

- унификации технологических решений.

1.5. На базе ТТК разрабатываются Рабочие технологические карты (РТК) на выполнение отдельных видов работ (СНиП 3.01.01-85* "Организация строительного производства") по заземлению железобетонных опор воздушной линии электроснабжения ВЛ-10 кВ.

Конструктивные особенности их выполнения решаются в каждом конкретном случае Рабочим проектом. Состав и степень детализации материалов, разрабатываемых в РТК, устанавливаются соответствующей подрядной строительной организацией, исходя из специфики и объема выполняемых работ.

РТК рассматриваются и утверждаются в составе ППР руководителем Генеральной подрядной строительной организации.

1.6. ТТК можно привязать к конкретному объекту и условиям строительства. Этот процесс состоит в уточнении объемов работ, средств механизации, потребности в трудовых и материально-технических ресурсах.

Порядок привязки ТТК к местным условиям:

- рассмотрение материалов карты и выбор искомого варианта;

- проверка соответствия исходных данных (объемов работ, норм времени, марок и типов механизмов, применяемых строительных материалов, состава звена рабочих) принятому варианту;

- корректировка объемов работ в соответствии с избранным вариантом производства работ и конкретным проектным решением;

- пересчёт калькуляции, технико-экономических показателей, потребности в машинах, механизмах, инструментах и материально-технических ресурсах применительно к избранному варианту;

- оформление графической части с конкретной привязкой механизмов, оборудования и приспособлений в соответствии с их фактическими габаритами.

1.7. Типовая технологическая карта разработана для инженерно-технических работников (производителей работ, мастеров, бригадиров) и рабочих, выполняющих работы в III-й температурной зоне, с целью ознакомления (обучения) их с правилами производства работ по заземлению железобетонных опор воздушной линии электроснабжения ВЛ-10 кВ, с применением наиболее современных средств механизации, прогрессивных конструкций и способов выполнения работ.

Технологическая карта разработана на следующие объёмы работ:

Протяженность ВЛ-10 кВ электроснабжения

- 260 м;

Железобетонные опоры

- 7 шт.

II. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Технологическая карта разработана на комплекс работ по заземлению железобетонных опор воздушной линии электроснабжения ВЛ-10 кВ.

2.2. Работы по заземлению железобетонных опор воздушной линии электроснабжения ВЛ-10 кВ, выполняются механизированным отрядом в одну смену, продолжительность рабочего времени в течение смены составляет:

2.3. При заземлении железобетонных опор воздушной линии электроснабжения ВЛ-10 кВ, выполняют следующие работы:

- заземление металлоконструкций на железобетонных опорах;

- устройство контура заземления вокруг каждой опоры;

- соединение заземления металлоконструкций опоры с контуром заземления опоры.

2.4. Технологической картой предусмотрено выполнение работ комплексным механизированным звеном в составе: переносная буровая установка ПБУ-10 (диаметр ввертываемого электрода 1218 мм, глубина погружения h=10,0 м, скорость погружения электрода 0,9-2,4 м/мин, масса установки m=36 кг); экскаватор-погрузчик JCB 3CX m (объем ковша g=0,28 м, глубина копания =5,46 м); передвижная бензиновая электростанция Honda ET12000 (3-фазная 380/220 В, N=11 кВт, m=150 кг); сварочный генератор (Honda) EVROPOWER ЕР-200Х2 (однопостовый, бензиновый, Р=200 А, Н=230 В, вес m=90 кг); электрическая шлифовальная машинка PWS 750-125 фирмы Bosch (Р=1,9 кг; N=750 Вт); ручная инжекторная газовая горелка Р2А-01 .

Рис.1. Экскаватор-погрузчик JCB 3CX m

Рис.2. Электростанция ET12000

Рис.3. Инжекторная газовая горелка Р2А-01

А - горелка; б - инжекторное устройство; 1 - мундштук; 2 - ниппель мундштука; 3 - наконечник; 4 - трубчатый мундштук; 5 - смесительная камера; 6 - резиновое кольцо; 7 - инжектор; 8 - накидная гайка; 9 - ацетиленовый вентиль; 10 - штуцер; 11 - накидная гайка; 12 - шланговый ниппель; 13 - трубка;14 - рукоять; 15 - сальниковая набивка;16 - кислородный вентиль

Рис.4. Сварочный генератор ЕР-200Х2

Рис.5. Электрошлифмашинка PWS 750-125

2.5. Для монтажа заземления применяют следующие строительные материалы: электроды заземления по ГОСТ Р 50571.5.54-2013 ; электроды 4,0 мм Э-42 по ГОСТ 9466-75 ; петлевые плашечные зажимы ПС-1 по ГОСТ 5583-78 ; ацетилен растворенный технический , по ГОСТ 5457-60; круг шлифовальный, зачистной "Vertex" размером 230х6,0х22,0 мм, по ТУ 3982-002-00221758-2009, мастика изоляционная, битумно-резиновая, марки МБР-90 по ГОСТ 15836-79 ; грунтовка ГТ-760 ИН по ТУ 102-340-83.

Рис.6. Электроды заземления

2.6. Работы по заземлению железобетонных опор воздушной линии электроснабжения ВЛ-10 кВ следует выполнять, руководствуясь требованиями следующих нормативных документов:

- СП 48.13330.2011. "Организация строительства. Актуализированная редакция СНиП 12-01-2004" ;

- СТО НОСТРОЙ 2.33.14-2011 . Организация строительного производства. Общие положения;

- СТО НОСТРОЙ 2.33.51-2011 . Организация строительного производства. Подготовка и производство строительно-монтажных работ;

- СНиП 3.05.06-85 . Электротехнические устройства;

- ПУЭ 7-е издание "Правила устройства электроустановок ";

- РД 153-34.3-35.125-99. "Руководство по защите электрических сетей 6-1150 кВ от грозовых и внутренних перенапряжений" ;

- СНиП 12-03-2001 . Безопасность труда в строительстве. Часть 1. Общие требования;

- СНиП 12-04-2002 . Безопасность труда в строительстве. Часть 2. Строительное производство;

- ПОТР РМ 012-2000 .* "Межотраслевые Правила по охране труда при работе на высоте";

- ВСН 123-90 . "Инструкция по оформлению приемо-сдаточной документации по электромонтажным работам";

- РД 11-02-2006 . Требования к составу и порядку ведения исполнительной документации при строительстве, реконструкции, капитальном ремонте объектов капитального строительства и требования, предъявляемые к актам освидетельствования работ, конструкций, участков сетей инженерно-технического обеспечения;

- РД 11-05-2007 . Порядок ведения общего и (или) специального журнала учета выполнения работ при строительстве, реконструкции, капитальном ремонте объектов капитального строительства;

- МДС 12-29.2006. "Методические рекомендации по разработке и оформлению технологической карты" .

III. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ РАБОТ

3.1. В соответствии с СП 48.13330.2001 "Организация строительства. Актуализированная редакция СНиП 12-01-2004 " до начала выполнения строительно-монтажных работ на объекте Подрядчик обязан в установленном порядке получить у Заказчика проектную документацию и разрешение (ордер) на выполнение строительно-монтажных работ. Выполнение работ без разрешения (ордера) запрещается.

3.2. До начала производства работ по заземлению железобетонных опор воздушной линии электроснабжения ВЛ-10 кВ необходимо провести комплекс организационно-технических мероприятий, в том числе:

- разработать ППР на строительство АГНКС и согласовать его Генеральным подрядчиком и техническим надзором Заказчика;

- решить основные вопросы, связанные с материально-техническим обеспечением строительства;

- назначить лиц, ответственных за безопасное производство работ, а также их контроль и качество выполнения;

- обеспечить участок утвержденной к производству работ рабочей документацией;

- укомплектовать бригаду электролинейщиков, ознакомить их с проектом и технологией производства работ;

- провести инструктаж членов бригады по технике безопасности;

- установить временные инвентарные бытовые помещения для хранения строительных материалов, инструмента, инвентаря, обогрева рабочих, приёма пищи, сушки и хранения рабочей одежды, санузлов и т.п.;

- подготовить к производству работ машины, механизмы и оборудования и доставить их на объект;

- обеспечить рабочих ручными машинами, инструментами и средствами индивидуальной защиты;

- обеспечить строительную площадку противопожарным инвентарем и средствами сигнализации;

- оградить строительную площадку и выставить предупредительные знаки, освещенные в ночное время;

- обеспечить связь для оперативно-диспетчерского управления производством работ;

- доставить в зону работ необходимые материалы, приспособления, инвентарь;

- установить, смонтировать и опробовать строительные машины, средства механизации работ и оборудование по номенклатуре, предусмотренные РТК или ППР;

- составить акт готовности объекта к производству работ;

- получить у технического надзора Заказчика разрешение на начало производства работ.

3.3. Общие положения

3.3.1. Для повышения надежности работы линий электропередачи, а также для обеспечения безопасности обслуживающего персонала опоры линий электропередачи должны быть заземлены.

3.3.2. На опорах ВЛ должны быть выполнены заземляющие устройства, предназначенные для повторного заземления, защиты от грозовых перенапряжений.

Металлические конструкции и арматура железобетонных элементов опор должны быть присоединены к РЕN-проводнику.

На железобетонных опорах РЕN-проводник следует присоединять к арматуре железобетонных стоек и подкосов опор.

3.3.3. Заземление - преднамеренное электрическое соединение какой-либо части (точки) сети, электроустановки или оборудования с заземляющим устройством.

Заземляющее устройство - совокупность заземлителя и заземляющих проводников.

Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

Заземляющий проводник - проводник, соединяющий заземляемую часть (точку) с заземлителем.

Сопротивление заземляющего устройства - отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

3.3.4. При выполнении заземляющих устройств, т.е. при электрическом соединении заземляемых частей с землей, стремятся к тому, чтобы сопротивление заземляющего устройства было минимальным и, конечно, не выше величин, требуемых ПУЭ . Большая доля сопротивления заземления приходится на переход от заземлителя к грунту. Поэтому в целом сопротивление заземляющего устройства зависит от качества и состояния самого грунта, глубины заложения заземлителей, их типа, количества и взаимного расположения.

3.3.5. Заземлители представляют собой металлические проводники, проложенные в грунте. Заземлители могут быть выполнены в виде вертикально забитых стержней, труб или уголков, соединенных между собой горизонтальными проводниками из круглой или полосовой стали в очаг заземления. Длина вертикальных заземлителей обычно составляет 2,5-3,0 м. Горизонтальные заземляющие проводники и верх вертикальных заземлителей должны находиться на глубине не менее 0,5 м, а на пахотных землях - на глубине 1 м. Заземлители соединяют между собой сваркой.

3.3.6. Все виды заземлений значительно снижают величину атмосферных и внутренних перенапряжений на ЛЭП. Однако все же этих защитных заземлений в некоторых случаях оказывается недостаточно для защиты изоляции ЛЭП и электроаппаратов от перенапряжений. Поэтому на линиях устанавливают дополнительные устройства, к которым относятся защитные искровые промежутки, трубчатые и вентильные разрядники.

3.3.7. Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования должны производиться:

- измерение сопротивления заземляющего устройства (таблица 1);

- измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения), проверка наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;

- измерение токов короткого замыкания электроустановки, проверка состояния пробивных предохранителей;

- измерение удельного сопротивления грунта в районе заземляющего устройства.

Результаты измерений оформляются протоколами.

Наибольшие допустимые значения сопротивлений заземляющих устройств

Таблица 1

Характеристики установки

Допустимое значение сопротивления, Ом

Установки напряжением до 1000 В:

генераторы и трансформаторы мощностью до 1000 кВ·А

остальное оборудование

Установки напряжением выше 1000 В:

установка с токами замыкания на землю свыше 500 А

установка с токами замыкания на землю менее 500 А

то же, в случае использования заземляющего устройства одновременно и для установок напряжением до 1000 В

Заземлитель отдельно стоящего молниеотвода в электроустановках напряжением выше 1000 В

Каждый из повторных заземлений нулевого провода электроустановок напряжением до 1000 В с глухим заземлением нейтрали

Заземляющее устройство металлических и железобетонных опор воздушных линий электропередачи:

напряжением выше 1000 В при удельном сопротивлении земли, Ом·см:

5x104-10x104

более 10x104

напряжением до 1000 В с изолированной нейтралью**

Заземлитель трубчатых разрядников:

устанавливаемых в местах пересечения линий напряжением 20 кВ и в местах с ослабленной изоляцией

устанавливаемых на подходах к линиям и подстанциям, с шинами которых электрически связаны вращающиеся машины

где I - расчетный ток замыкания на землю, А.

* В сетях, для которых сопротивление заземляющих устройств генераторов и трансформаторов составляет 10 Ом, сопротивление заземляющих устройств каждого из повторных заземлений должно быть не более 30 Ом при числе их не менее трех.

** В сетях с заземленной нейтралью металлические опоры и арматура должны быть соединены с нулевым заземленным проводом.


3.4. Подготовительные работы

3.4.1. К работам по монтажу заземления можно приступать после проверки полной готовности линии электроснабжения.

3.4.2. Готовность линии ВЛ-10 кВ к монтажу заземления определяется прорабом или мастером. Обнаруженные при осмотре трассы ЛЭП в натуре дефекты или незаконченные работы должны быть внесены в дефектную ведомость. К монтажу заземления разрешается приступать только после устранения дефектов и недоделок, указанных в ведомости, и получения письменного разрешения от лица, ответственного за монтаж линии ВЛ-10 кВ.

3.4.3. После осмотра трассы и получения наряда-допуска на монтаж приступают к подготовке к монтажу заземления, которая заключается в:

- подготовке электродов (заземлителей);

- подготовке заземляющих проводников.

3.4.4. Электроды (заземлители) заготавливают в мастерских электромонтажных заготовок для вертикальной забивки. Для изготовления заземлителя применяют угловую сталь, некондиционные и маломерные трубы, круглую сталь. Для заземляющих устройств используются преимущественно вертикальные электроды из стальных стержней или уголков. Электроды круглого сечения самые экономичные и долговечные. Их диаметр принимают в зависимости от плотности грунта и глубины погружения: до 4 м - диаметр электрода 10-12 мм, до 5 м - 12-14 мм. В грунтах, где усиленную коррозию металла могут вызвать агрессивные грунтовые воды, применяют оцинкованные или омедненные заземлители. Электроды из стальных уголков 40х40х4 мм изготавливают длиной 2,5-3,0 м с одним заостренным концом для лучшего заглубления в грунт.

3.4.5. Выпускаемый промышленностью наконечник (рис.1),* представляет собой заостренную на конце и изогнутую по винтовой линии стальную полоску шириной 16 мм. Масса наконечника длиной 48 и диаметром 16 мм составляет 0,03 кг. При отсутствии стандартных наконечников и необходимости подготовки их вручную проще всего отковать конец электрода, доведя его диаметр примерно до 1,5 диаметров электрода, и заострить конец (рис.1, б). Такой электрод сравнительно дешев и погружается гораздо легче, чем электрод, конец которого заострен на конус без уширения. Применение последнего менее рационально, так как его не всегда удается ввернуть на глубину 5 м. Электроды, к которым наварена около заостренного конца спираль из проволоки диаметром 4-6 мм и длиной около 1 м (рис.1, в), образующая наконечник в виде бурава, или приварена разрезанная и изогнутая стальная шайба (рис.1, г), ввертываются легко. С их помощью можно даже ввернуть электрод в промерзший грунт при небольшой глубине промерзания. При изготовлении электродов со спиралью нужно учитывать направление вращения применяемого заглубителя, так как в некоторых конструкциях электрозаглубителей с редуктором вращение левое, и винтовой электрод должен соответствовать этому, иначе электрод вместе ввертывания будет тормозиться.

________________

* Нумерация рисунков соответствует оригиналу. - Примечание изготовителя базы данных.

Рис.7. Стержневые электроды, подготовленные к погружению:

А - наконечник изготовлен из изогнутой по винтовой линии стальной полоски и приварен к электроду: б - нижний конец электрода уширен ковкой и заострен; в - на заостренный конец электрода наварена стальная проволока, придающая электроду свойство бурава; г - наконечник с изогнутой и приваренной стальной шайбой

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

ЗАЗЕМЛЕНИЕ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ



Для повышения надежности работы линий электропередачи, для защиты электроаппаратуры от атмосферных и внутренних перенапряжений, а также для обеспечения безопасности обслуживающего персонала опоры линий электропередачи должны быть заземлены.


Величина сопротивления заземляющих устройств нормируется "Правилами устройств электроустановок".


На воздушных линиях электропередачи на напряжение 0,4 кВ с железобетонными опорами в сетях с изолированной нейтралью должны быть заземлены как арматура опор, так и крюки и штыри фазных проводов. Сопротивление заземляющего устройства не должно превышать 50 Ом.


В сетях с заземленной нейтралью крюки и штыри фазных проводов, устанавливаемых на железобетонных опорах, а также арматуру этих опор необходимо присоединять к нулевому заземленному проводу. Заземляющие и нулевые проводники во всех случаях должны иметь диаметр не менее 6 мм.


На воздушных линиях электропередачи на напряжение 6-10 кВ должны быть заземлены все металлические и железобетонные опоры, а также деревянные опоры, на которых установлены устройства грозозащиты, силовые или измерительные трансформаторы, разъединители, предохранители или другие аппараты.


Сопротивления заземляющих устройств опор принимаются для населенной местности не выше приведенных в табл. 18, а в ненаселенной местности в грунтах с удельным сопротивлением грунта до 100 Ом·м - не более 30 Ом, а в грунтах с сопротивлением выше 100 Ом·м - не более 0,3. При использовании на ЛЭП на напряжение 6-10 кВ изоляторов ШФ 10-Г, ШФ 20-В и ШС 10-Г сопротивление заземления опор в ненаселенной местности не нормируется.


Таблица 18

Сопротивление заземляющих устройств опор ЛЭП

на напряжение 6-10 кВ

#G0 Удельное сопротивление грунта , Ом·м

Сопротивление заземляющего устройства, Ом

До 100

До 10

100-500

" 15

500-1000

" 20

1000-5000

" 30

Более 5000

6·10


При выполнении заземляющих устройств, т.е. при электрическом соединении заземляемых частей с землей, стремятся к тому, чтобы сопротивление заземляющего устройства было минимальным и, конечно, не выше величин, требуемых #M12293 0 1200003114 3645986701 3867774713 77 4092901925 584910322 1540216064 77 77 ПУЭ#S . Большая доля сопротивления заземления приходится на переход от заземлителя к грунту. Поэтому в целом сопротивление заземляющего устройства зависит от качества и состояния самого грунта, глубины заложения заземлителей, их типа, количества и взаимного расположения.


Заземляющие устройства состоят из заземлителей и заземляющих спусков, соединяющих заземлители с заземляющими элементами. В качестве заземляющих спусков железобетонных опор ЛЭП на напряжение 6-10 кВ следует использовать все элементы напряженной арматуры стоек, которые соединяются с заземлителем. Если опоры установлены на оттяжках, то оттяжки железобетонных опор также должны быть использованы в качестве заземляющих проводников дополнительно к арматуре. Специально прокладываемые по опоре заземляющие спуски должны иметь сечение не менее 35 мм или диаметр не менее 10 мм.


На воздушных линиях электропередачи с деревянными опорами рекомендуется применять болтовое соединение заземляющих спусков; на металлических и железобетонных опорах соединение заземляющих спусков может быть выполнено как сварным, так и болтовым.


Заземлители представляют собой металлические проводники, проложенные в грунте. Заземлители могут быть выполнены в виде вертикально забитых стержней, труб или уголков, соединенных между собой горизонтальными проводниками из круглой или полосовой стали в очаг заземления. Длина вертикальных заземлителей обычно составляет 2,5-3 м. Горизонтальные заземляющие проводники и верх вертикальных заземлителей должны находиться на глубине не менее 0,5 м, а на пахотных землях - на глубине 1 м. Заземлители соединяют между собой сваркой.


При установке опор на сваях, в качестве заземлителя можно использовать металлическую сваю, к которой сваркой подсоединяют заземляющий выпуск железобетонных опор.


Для уменьшения площади земли, занятой заземлителем, используют глубинные заземлители в виде стержней из круглой стали, погружаемых вертикально в грунт на 10-20 м и более. Наоборот, в плотных или каменистых грунтах, где невозможно заглубить вертикальные заземлители, используют поверхностные горизонтальные заземлители, которые представляют собой несколько лучей из полосовой или круглой стали, проложенных в земле на небольшой глубине и подсоединенных к заземляющему спуску.


Все виды заземлений значительно снижают величину атмосферных и внутренних перенапряжений на ЛЭП. Однако все же этих защитных заземлений в некоторых случаях оказывается недостаточно для защиты изоляции ЛЭП и электроаппаратов от перенапряжений. Поэтому на линиях устанавливают дополнительные устройства, к которым, прежде всего, относятся защитные искровые промежутки, трубчатые и вентильные разрядники.


Защитное свойство искрового промежутка основано на создании в линии "слабого" места. Изоляция искрового промежутка, т.е. расстояние по воздуху между его электродами, таково, что электрическая прочность его достаточна, чтобы выдерживать рабочее напряжение ЛЭП и не допустить замыкания рабочего тока на землю, и в то же время она слабее изоляции линии. При ударе молнии в провода ЛЭП грозовой разряд пробивает "слабое" место (искровой промежуток) и проходит в землю, не нарушая изоляции линии. Защитные искровые промежутки 1 (рис. 22, а, б) состоят из двух металлических электродов 2, установленных на определенном расстоянии друг от друга. Один электрод подсоединен к проводу 6 ЛЭП и изолируется от опоры изолятором 5, а другой заземлен (4). Ко второму электроду подсоединен дополнительный защитный промежуток 3. На линиях на напряжение 6-10 кВ со штыревыми изоляторами форма электродов выполняется в виде рогов, что обеспечивает растяжение дуги при разряде. Кроме того, на этой ЛЭП защитные промежутки устраивают непосредственно на заземляющем спуске, проложенном по опоре (рис. 23).





Рис. 22. Защитный искровой промежуток для ЛЭП на напряжение до 10 кВ:

а - электрическая схема; б - схема установки

Рис. 23. Устройство защитного промежутка на опоре


Трубчатые и вентильные разрядники устанавливают, как правило, на подходах к подстанциям, переходах ЛЭП через линии связи и ЛЭП, электрифицированные железные дороги, а также для защиты кабельных вставок на ЛЭП. Разрядники представляют собой аппараты, имеющие искровые промежутки и устройства для гашения дуги. Устанавливают их так же, как и защитные промежутки - параллельно защищаемой изоляции.


Вентильные разрядники типа РВ предназначены для защиты от атмосферных перенапряжений изоляции электрооборудования. Их выпускают на напряжение 3,6 и 10 кВ и можно устанавливать как на открытом воздухе - на ЛЭП, так и в закрытых помещениях. Основная электрическая характеристика разрядников приведена в табл. 19. Конструктивное исполнение, габаритные, установочные и присоединительные размеры разрядников показаны на рис. 24.


Таблица 19

Характеристика вентильных разрядников



#G0 Показатели

РВО-0,5

РВО-3

РВО-6

РВО-10

Номинальное напряжение, кВ

Пробивное напряжение при частоте 50 Гц в сухом состоянии и под дождем, кВ:

не менее

не более

30,5

Длина пути утечки внешней изоляции (не менее), см

Масса, кг

Рис 24 Вентильный разрядник типа РВО:

1 - болт М8х20; 2 - покрышка; 3 - искровой промежуток; 4 - два болта М10х25 для крепления

разрядника; 5 - резистор; 6 - хомут; 7 - болт M8х20 для присоединения провода заземления


Разрядник состоит из многократного искрового промежутка 3 и резистора 5, которые заключены в герметически закрытую фарфоровую покрышку 2. Фарфоровая покрышка предназначена для защиты внутренних элементов разрядника от воздействия внешней среды и обеспечения стабильности характеристики. Резистор состоит из вилитовых дисков, изготовленных из карбида кремния, обладает нелинейной вольтамперной характеристикой, т. е. его сопротивление уменьшается под воздействием высокого напряжения, и наоборот.


Многократный искровой промежуток состоит из нескольких единичных промежутков, который образуется двумя фасонными латунными электродами, разделенным изолирующей прокладкой.


При появлении опасного для изоляции оборудования перенапряжения происходит пробой искрового промежутка, и резистор оказывается под высоким напряжением. Сопротивление резистора резко уменьшается и ток молнии проходит через него, не создавая опасного для изоляции повышения напряжения. Следующий за пробоем искрового промежутка сопровождающий ток промышленной частоты прерывается при первом переходе напряжения через нулевое значение.


Буквенная маркировка разрядников означает тип и конструкцию разрядника, а цифры - номинальное напряжение.


Трубчатые разрядники (рис. 25) представляют собой изолирующую трубку 1 с внутренним искровым промежутком , который образуется двумя металлическими электродами 2 и 3. Трубу изготовляют из газогенерирующего материала и одну из ее сторон закрывают наглухо. При ударе молнии пробивается искровой промежуток и между электродами возникает дуга. Под действием большой температуры дуги из изолирующей трубки бурно выделяются газы и давление в ней поднимается. Под воздействием этого давления газы выходят через открытый конец трубки, чем создают продольное дутье, которое растягивает и охлаждает дугу. При прохождении сопровождающего тока через нулевое положение растянутая и охлажденная дуга гаснет и ток обрывается. Чтобы предохранить поверхность изолирующей трубки от разрушения токами утечки, в трубчатом разряднике устраивают внешний искровой промежуток .




Рис 25. Трубчатый разрядник

Трубчатые разрядники выпускают фибробакелитовыми типа РТФ или винипластовыми типа РТВ. Характеристика трубчатых разрядников приведена в табл. 20.

Таблица 20

Характеристика трубчатых разрядников



#G0 Тип разрядника

Номинальное напряжение, кВ

Длина внешнего искрового промежутка, мм

Титульный лист
Перечень чертежей
Пояснительная записка
Деревянные опоры ВЛ 0,4 кВ. Заземление крюков и поворотное заземление нулевого провода
Деревянные опоры ВЛ 35 кВ. Заземление троса на промежуточной и анкерных опорах
Деревянные опоры ВЛ 6 - 10 кВ. Устройство защитных промежутков на опорах при пересечении с ВЛ или с линиями связи
Деревянные опоры ВЛ 20 кВ. Устройство защитных промежутков на опорах при пересечении с ВЛ или с линиями связи
Деревянные опоры ВЛ 35 кВ. Устройство защитных промежутков на опорах при пересечении с ВЛ или с линиями связи
Деревянные опоры ВЛ 6 - 10 кВ. Заземление трубчатых разрядников РТ-6 и РТ-10 на анкерной и промежуточных опорах
Деревянные опоры ВЛ 6 - 10 кВ. Заземление трубчатых разрядников РТ-6 и РТ-10 (переходные) на анкерной повышенной опоре
Деревянные опоры ВЛ 6 - 10 кВ. Заземление кабельной муфты и трубчатых разрядников на концевой опоре
Деревянные опоры ВЛ 20 кВ (переходные). Заземление трубчатых разрядников РТ-20 на промежуточной повышенной опоре
Деревянные опоры ВЛ 20 кВ (переходные). Заземление трубчатых разрядников РТ-20 на анкерной повышенной опоре
Деревянные опоры ВЛ 35 кВ. Заземление трубчатых разрядников РТ-35 на анкерной опоре
Железобетонные опоры ВЛ 0,4 кВ. Заземление промежуточной ОП-0,4 и промежуточной перекрестной ПК-0,4 опор
Железобетонные опоры ВЛ 0,4 кВ. Заземление промежуточной переходной опоры ПП-0,4
Железобетонные опоры ВЛ 0,4 кВ. Заземление угловых анкерных опор УА-I-0,4 и УА-II-0,4
Железобетонные опоры ВЛ 0,4 кВ. Заземление концевой К-0.4 и анкерной А-0,4 опор
Железобетонные опоры ВЛ 0,4 кВ. Заземление ответвительной анкерной опоры ОА-0,4
Железобетонные опоры ВЛ 0.4 кВ. Заземление ответвительной переходной опоры ОП-0,4
Железобетонные опоры ВЛ 0,4 кВ. Заземление вводных ящиков на промежуточной и концевой опорах для подключения электродвигателей мобильных машин
Железобетонные опоры ВЛ 0,4 кВ. Заземление ящика с АП50-Т для секционирования магистрали на анкерной опоре
Железобетонные опоры ВЛ 0,4 кВ. Заземление кабельной муфты 4 км, разрядников РВН-0,5, светильника СПО-200 на концевой опоре
Железобетонные опоры ВЛ 6 - 10 и 20 кВ. Заземление промежуточных опор для ненаселенной и населенной местности П10-1Б; П20-1Б; П10-2Б; П20-2Б
Железобетонные опоры ВЛ 6 - 10 и 20 кВ. Заземление угловых промежуточных опор для ненаселенной и населенной местности УП10-1Б; УП20-1Б
Железобетонные опоры ВЛ 6 - 10 и 20 кВ. Заземление концевых опор для ненаселенной и населенной местности К10-1Б; К10-2Б; К20-1Б
Железобетонные опоры ВЛ 6 - 10 и 20 кВ. Заземление ответвительных промежуточных опор для ненаселенной местности ОП10-1Б; ОП20-1Б; ОП10-2Б; ОП20-2Б
Железобетонные опоры ВЛ 6 - 10 и 20 кВ. Заземление ответвительных опор для ненаселенной местности ОП10-1Б; ОП10-2Б и 020-1Б
Железобетонные опоры ВЛ 6 - 10 и 20 кВ. Заземление ответвительных угловых промежуточных опор для ненаселенной местности ОУП10-1Б; ОУП20-1Б
Железобетонные опоры ВЛ 6 - 10 и 20 кВ. Заземление кабельной муфты КМА(КМЧ) и разрядников РТ-6; РТ-10 на концевой опоре
Железобетонные опоры ВЛ 6 - 10 и 20 кВ. Заземление концевых опор ВЛ 6 - 10 и 20 кВ с разъединителями для населенной и ненаселенной местности КР10-1Б; КР10-2Б; КР10-3Б; КР20-1Б
Железобетонные опоры ВЛ 35 кВ. Заземление промежуточных опор для ненаселенной и населенной местности П35-1Б и П35-2Б
Железобетонные опоры ВЛ 35 кВ. Заземление промежуточных опор с тросом для ненаселенной и населенной местности ПТ35-1Б и ПТ35-2Б
Железобетонные опоры ВЛ 35 кВ. Заземление угловых анкерных опор для ненаселенной и населенной местности УА35-16; УА35-26
Железобетонные опоры ВЛ 35 кВ. Заземление угловой промежуточной опоры для ненаселенной местности УП35-1Б
Железобетонные опоры ВЛ 35 кВ. Заземление концевых и анкерных опор для ненаселенной и населенной местности К35-1Б; К35-2Б; А35-1Б; А35-2Б
Железобетонные опоры ВЛ 35 кВ. Заземление угловой промежуточной, концевой и анкерной опор с тросом для ненаселенной и населенной местности УПТ35-1Б; КТ35-1Б; КТ35-2Б; АТ35-1Б; АТ35-2Б
Железобетонные опоры ВЛ 35 кВ. Заземление угловых анкерных опор с тросом для ненаселенной и населенной местности УАТ35-1Б; УАТ35-2Б
Железобетонные опоры ВЛ 10; 20; 35 кВ. Заземление переходной промежуточной опоры ПП35-Б; ПП20-Б; ПП10-Б
Железобетонные опоры ВЛ 35 кВ. Заземление промежуточной переходной опоры с тросом ППТ35-Б
Железобетонные опоры ВЛ 10; 20; 35 кВ. Заземление угловой анкерной переходной опоры УАП35-Б; УАП20-Б; УАП10-Б
Железобетонные опоры ВЛ 135 кВ. Заземление угловой анкерной переходной опоры УАПТ35-Б
Железобетонные опоры ВЛ 10; 20; 35 кВ. Заземление концевой переходной опоры КП35-Б; КП20-Б; КП10-Б
Железобетонные опоры ВЛ 35 кВ. Заземление концевой переходной опоры с тросом КПТ35-Б
Разъединительный пункт 20 кВ с автоматическим секционирующим отделителем на железобетонной опоре. Заземление
Примеры выполнения повторного заземления нулевого провода, крюков и штырей на железобетонной и деревянной опорах
Эскизы заземлителей для R = <10 ом
Эскизы заземлителей для R = <15 ом; R = < 20 ом
Эскизы заземлителей для R = < 30 ом
Формулы для определения сопротивления растеканию тока различных заземлителей
Исходные данные для расчета заземлителей
Железобетонные и деревянные опоры. Заземление опор. Выбор зажимов
Деревянные опоры ВЛ 0,4 кВ. Заземление крюков и поворотное заземление нулевого провода. Узлы. Детали
Узлы и детали
Примеры устройства заземлителей. Узлы

Воздушная линия > Заземляющие устройства опор ВЛ

ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА ОПОР ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ НАПРЯЖЕНИЕМ
0,38; 6; 10; 20 кВ
данный раздел подготовлен согласно типового проекта СЕРИЯ 3.407-150


Типовые конструкции настоящей серии разработаны с учётом требований Правил устройства электроустановок (ПУЭ) шестого издания как по конструктивному исполнению, так и в части учёта нормируемых сопротивлений растеканию заземлителей для грунтов с эквивалентным удельным сопротивлением до 100 .
В серию включены конструкции заземлителей, предназначенных для заземления опор, а также опор с установленным на них оборудованием на ВЛ 0,38, 6, 10, 20 кВ в соответствии с требованиями главы 1.7 и других глав ПУЭ.
Предусмотрены следующие конструкции заземлителей: вертикальные, горизонтальные (лучевые), вертикальные в сочетании с горизонтальными, замкнутые горизонтальные (контурные), контурные в сочетании с вертикальными и горизонтальными (лучевыми).
Конструктивное выполнение заземляющих и нулевых защитных проводников, проложенных на опорах ВЛ, принимаются в соответствии с действующими типовыми проектами и проектами повторного применения опор BЛ.

Конструкции данной серии должны применяться проектировщиками, монтажниками и эксплуатационниками при сооружений и реконструкции ВЛ 0,38, 6, 10 и 20 кВ.
В настоящей серии не рассматриваются заземлители в районах северной строительно - климатической зоны (подрайоны IА, IБ, IГ и IД по СИиП 2.01.01-82) и в районах распространения скальных грунтов.

ОБЩИЕ ПОЛОЖЕНИЯ ПО РАСЧЕТУ ЗАЗЕМЛИТЕЛЕЙ
Исходными данными при проектировании заземляющих устройств ВЛ являются параметры электрической структуры земли и требования по величинам сопротивления заземления.
Удельные сопротивления грунтов r и толщина слоёв грунта с различными значениями r могут быть получены непосредственно при измерениях по трассе проектируемой ВЛ или по данным замеров удельных сопротивлений аналогичных грунтов в районе трассы ВЛ, на площадках подстанций и т.д.
При отсутствии данных прямых измерений удельного сопротивления грунта проектировщикам следует пользоваться полученными от изыскателей геологическим разрезом грунта по трассе и обобщёнными значениями удельных сопротивлений различных грунтов, приведёнными в таблице.


Обобщенные значения удельных сопротивлений грунтов

В настоящее время разработаны достаточно надёжные инженерные методы определения электрической структуру земли, расчета сопротивлений заземлителей в однородной и двухслойной земле, а также способы приведения реальных многослойных электрических структур земли к расчётным двухслойным эквивалентным моделям. Разработанные методы позволяют определять целесообразные конструкции искусственных заземлителей для данной электрической структуры грунта обеспечивающие нормированную величину сопротивления заземлителей.

ВЫБОР СЕЧЕНИЯ ЭЛЕМЕНТОВ ЗАЗЕМЛИТЕЛЯ
На основании исследований проведённых СИБНИИЭ установлено, что сопротивление растеканию практически не зависит от размеров и конфигурации поперечного сечения заземлителя. В то же время элементы заземлителя, имеющие круглое сечение, значительно долговечнее эквивалентных по сечению плоских проводников, ибо при одинаковой скорости коррозии остающееся сечение последних снижается значительно быстрее. В связи с этим для заземлителей ВЛ целесообразно применять только круглую сталь.

КОНСТРУКТИВНОЕ ВЫПОЛНЕНИЕ ЗАЗЕМЛИТЕЛЕЙ И РЕКОМЕНДАЦИИ ПО МОНТАЖУ
Заземлители ВЛ предусмотрены из круглой стали: горизонтальные диаметром 10 мм, вертикальные - 12мм, что вполне достаточно на расчетный срок службы в условиях слабой и средней коррозии.
В случае усиленной коррозии должны быть приняты меры, повышающие долговечность заземлителей.
В качестве вертикальных заземлителей могут быть использованы также угловая сталь и стальные трубы. При этом их размеры должны соответствовать требованиям ПУЭ.
Учитывая, что предельная глубина погружения вертикальных заземлитёлей (электродов) при существующих в настоящее время механизмах в достаточно мягким грунтах 20 м, в настоящей серии они предусмотрены длиной 3, 5, 10, 15 и 20м.
В грунтах с малыми удельными сопротивлениями (при
до 10 Ом Ч м) предусматривается использование только нижнего заземляющего выпуска - стержневого электрода длиной порядка 2 м, поставляемого комплектно с железобетонной стойкой.
При монтаже заземлителей следует соблюдать требования строительных норм и правил и ГОСТ 12.1.030-81.
Для разработки траншей при прокладке горизонтальных заземлителей возможно применение экскаватора типа ЭТЦ -161 на базе трактора беларусь МТЗ-50. Они могут укладываться так же с помощью монтажного плуга. При этот следует учитывать необходимость рытья котлованов размером 80х80х60 см в местах погружения вертикальных заземлитёлей и последующего их присоединения с помощью сварки к горизонтальному заземлителю.
Вертикальные заземлители погружаются методом вибрирования или засверливания, а также, забивкой или закладкой в готовые скважины.
Погружение вертикальных электродов производится с тем расчетом, чтобы верх их был на 20см выше дна траншей.
Затем прокладываются горизонтальные заземлители. Производится отгиб концов вертикальных заземлителей в местах примыкания их к горизонтальному заземлителю по направлению оси траншеи.
Соединение заземлителей между содой следует выполнять сваркой в нахлёстку. При этом длина нахлёстки должна быть равна шести диаметрам заземлителя. Сварку следует выполнять по всему периметру нахлёстки. Узлы соединения заземлителей приведены в разделах ЭС37 и ЭС38 .
Для защиты от коррозии сборные стыки следует покрывать битумным лаком.
Засыпка траншей производится бульдозером на базе трактора Беларусь МТЗ-50.
В разделе ЭС42 приведены объёмы земляных работ в случае рытья траншей при механизированной и ручной копке.
При выполнении проекта ВЛ в частности заземлителей необходимо учитывать возможности мехколонны, которая будет строить данную линию с точки зрения оснащения еe механизмами.
После устройства заземлителей производятся контрольные замеры их сопротивления. В случае, если сопротивление превышает нормируемое значение, добавляются вертикальные заземлители для получения требуемой величины сопротивления.

ПРИСОЕДИНЕНИЕ ЗАЗЕМЛИТЕЛЕЙ К ОПОРАМ
Присоединение заземлителей к специальным заземляющим выпускам (деталям) железобетонных стоек опор и заземляющим спускам деревянных опор может быть кок сварным, так и болтовым. Контактные соединения должны соответствовать классу 2 по ГОСТ 10434-82 .
В месте присоединения заземлителей к заземляющим спускам на деревянных опорах ВЛ 0,38 кВ предусматриваются дополнительные отрезки из круглой стали диаметром 10 мм, а заземляющие спуски на деревянных опорах ВЛ 6, 10 и 20 кВ выполняемые из круглой стали диаметром не менее 10 мм, присоединяются непосредственно к заземлителю.
Наличие болтового соединения заземляющего спуска с заземлителем обеспечивает возможность осуществления контроля заземляющих устройств опор ВЛ без подъема на опору и отключения линии.
При наличии приборов для контроля заземлителей соединение заземляющего спуска с заземлителем может выполняться неразъёмным.
Контроль и измерения заземлителей должны проводиться в соответствии с "Правилами технической эксплуатации электрических станций и сетей".

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ
В связи с тем, что инженерные методы расчёта заземлителей разработаны для двухслойной структуры грунта, расчётная многослойная электрическая структура грунта приводится к эквивалентной двухслойной структуре. Метод приведения зависит от характера изменения удельных сопротивлений слоев расчётной структуры по глубине и глубины заложения заземлителя.
В однородном грунте и в грунте с убывающим по глубине удельным сопротивлением (порядка в 3 и более раза) наиболее целесообразными являются вертикальные заземлители.
Если нижележащие слои грунта имеют значительно более высокие значения удельных сопротивлений, чем верхние, или когда погружение вертикальных заземлителей затруднено или невозможно из-за плотности грунтов, в качестве искусственных заземлителей рекомендуется применять горизонтальные (лучевые) заземлители.
Если вертикальные заземлители не обеспечивают нормированных значений сопротивления, то дополнительно к вертикальным прокладываются горизонтальные, т. е. применяются комбинированные заземлители.
По эквивалентной двухслойной структуре и предварительно выбранной конструкции заземлителя определяется
.
Для найденного
и для нормированного сопротивления заземляющего устройства по ПУЭ подбирается соответствующий тип заземлителя данной серии.
Ниже приведена таблица подбора чертежей заземлителей.
Расчёты заземлителей выполнены на ЭВМ по программе, разработанной Западно - Сибирским отделением института "Сельэнергопроект".

Внимание: согласно ПУЭ 7-е изд. заземляющие проводники для повторных заземлений PEN -проводника должны иметь размеры не менее приведенных в табл. 1.7.4.

Представить себе современную цивилизацию без электричества невозможно. Огромная часть углеводородов используется для генерации именно электроэнергии.

Однако электричество невозможно перевозить, как нефть или уголь. Для его транспортировки используют линии электропередачи (ЛЭП), обеспечивающие трафик электроэнергии большой мощности на необходимые расстояния. Приведение же параметров переданной по ним энергии к стандартам, свойственным ее потребителям, подразумевает использование трансформаторных подстанций, которые обеспечивают необходимое напряжение в сети. Таким образом, осуществляется питание всех электроустановок, начиная от лампочки в комнате и заканчивая промышленным оборудованием.

Для предотвращения травматизма обслуживающего персонала и тем более летальных исходов, учитывая высокий вольтаж, применяются заземляющие устройства воздушных линий и подстанций. Данная публикация ставит перед собой задачу разобраться в причинах их необходимости, а также конструкциях этих приспособлений.

Для чего нужно заземлять ЛЭП и подстанции

По большому счету, воздушная линия (ВЛ) представляет собой ряд столбов (опор), подвергающемуся воздействию природных факторов, таких как перепады температур, атмосферные осадки, прямое воздействие солнечного ультрафиолета и прочих. Ввиду их влияния, могут изменяться свойства диэлектриков и происходить прямое касание токонесущих частей кабеля с опорой. Кроме прочего, нередки кратковременные скачки напряжения в линии со значительным превышением номинального (допустимого) значения, что может приводить к замыканию между кабелем и конструкционными элементами опоры.

При прикосновении к такому столбу человек может получить травму и даже умереть. Поэтому установка заземления на воздушной линии отнюдь не относится к разряду рекомендаций или прихотей органов контроля. Это продиктовано правилами устройства электроустановок (ПУЭ) как основным нормативным документом, регламентирующим требования к энергосистемам, в том числе ВЛ. Согласно этому документу, заземляющие устройства опор воздушных линий обязательны.

Особняком стоит вопрос молниезащиты конструкций. Опоры могут быть выполнены из дерева, железобетона или стали. Для стоящих в чистом поле опор, порой, имеющих весьма значительную высоту, попадание молнии отнюдь не редкое явление. Если для стали или железобетона, имеющих хорошую электропроводность и неспособных к горению, это не принесет серьезных повреждений, то для деревянной конструкции чревато разрушением или воспламенением. Учитывая колоссальное напряжение разряда молнии, возможно разрушение диэлектриков, ограждающих конструкционные элементы от токонесущих частей ВЛ, что, в свою очередь, приводит к аварии.

Все это в равной степени относится и к подстанциям. До сих пор некоторые из них представляют собой большой трансформатор посреди поля, питающий ферму, например. Трансформаторные установки подвержены всем негативным воздействиям, что и ВЛ. Даже если это не так, они должны соответствовать требованиям ПУЭ.

Оборудованная же устройством заземления мачта или подстанция ведет себя иначе. Весь заряд, попавший на опору, стечет на землю, учитывая низкое ее сопротивление и огромную емкость. Это значит, что конструкция не будет находиться под напряжением и будет безопасна для жизни и здоровья людей.

Основные требования

Согласно требованиям ПУЭ, практически каждая опора должна иметь заземляющее устройство. Оно необходимо для предотвращения перенапряжения атмосферного характера (молния), защиты электрооборудования, размещенного на мачте, а также реализации повторного заземления. Его сопротивление при этом не должно превышать 30 Ом. Причем громоотводы и подобные устройства, должны соединяться с заземлителем отдельным проводником. Кроме прочего, обязательному заземлению подлежат растяжки, устанавливаемые для устойчивости опоры, если они присутствуют в ее конструкции. Все межсоединения, провода снижения и заземлителя, например, предпочтительно выполнять сваркой, а, за неимением возможности, скручиваться болтами . Все части заземляющего устройства должны быть выполнены из стали диаметром не менее 6 мм. Сам проводник и места стыковок должны иметь антикоррозийное покрытие. Обычно это стальная оцинкованная проволока соответствующего диаметра.

Железобетонные столбы

Устройство заземления ВЛ зависит от материала опор. В случае железобетонной конструкции все выступающие сверху и снизу элементы арматуры должны быть присоединены к PEN-проводнику (нулевая шина), который впоследствии играет роль заземления. К нему же следует присоединить крюки, кронштейны и другие металлоконструкции, находящиеся на опоре. Все это в равной степени относится и к металлическим мачтам ВЛ.

Деревянные столбы

С деревянными опорами ВЛ дело обстоит несколько иначе. Ввиду диэлектрических свойств древесины, каждая из мачт не нуждается в отдельном устройстве заземления. Оно устанавливается лишь при наличии на мачте молниеотвода или повторного заземления. Кроме того, металлическая оболочка кабеля соединяется с PEN-шиной линии в местах перехода ВЛ в кабельную линию.

Малоэтажная застройка

Все виды опор должны быть оборудованы устройствами заземления, если речь идет о населенных пунктах с малоэтажной застройкой (1 или 2 этажа).

Расстояние между такими мачтами зависит от среднегодового значения часов, в которые случается гроза. Если эта величина не превышает 40, то промежутки между опорами с громоотводами должны составлять менее 200 м. В противном случае это расстояние сокращается до 100 м. Кроме того, обязательному заземлению подлежат опоры, представляющие ветвление от ВЛ к объектам с потенциально массовым скоплением людей, клубы или дома культуры, например.

Установка заземлителей

Заземление ВЛ осуществляется вертикальными или горизонтальными заземлителями. В первом случае это стальные штыри, закопанные или забитые в землю, а во втором представляют собой полосы металла, расположенные параллельно земле под ее поверхностью. Последний вариант применяют для грунта с высоким удельным сопротивлением. После закапывания контура землю трамбуют для обеспечения лучшего ее контакта с металлом. Затем производится измерение сопротивления у заземления опор ВЛ. Оно является произведением значения, полученного прямым измерением, на коэффициент, зависящий от типа и размера заземлителя, а также климатической зоны (есть специальные таблицы).

Особенности подстанций

Все ранее описанное относится и к подстанциям, несмотря на то, что они находятся под крышей. Исключение составляет лишь то, что там довольно часто или постоянно находятся люди, а, следовательно, к их заземлению предъявляются особые требования.

В общем случае заземление подстанции состоит из следующих элементов:

  • внутренний контур;
  • внешний контур;
  • устройство молниезащиты объекта.

Внутренний контур заземления подстанции обеспечивает простое и надежное соединение с землей всех устройств, находящихся внутри подстанции. Для этого по периметру всех помещений объекта на высоте 40 см от пола дюбелями закрепляют стальную полосу. Контуры всех помещений, а также и их составные части соединяются сваркой или резьбовыми соединениями, если таковые предусмотрены. Все металлические части, непредназначенные для прохождения тока (корпуса приборов, ограждения, люки и подобное тому), соединяются с этой шиной. Подобные полосы оснащаются резьбовыми соединениями с шайбами увеличенной ширины и гайками типа «барашек». Это позволяет получить надежное переносное заземление. Нулевая шина силового трансформатора, учитывая схему с глухозаземленной нейтралью, соединяется с полученным контуром.

Внешний контур

Внешний контур заземления также является замкнутым. Он представляет собой горизонтальный заземлитель из стальной полосы, связывающий определенное количество вертикальных штырей. Глубина залегания этой конструкции должна быть не менее 70 см от поверхности, причем полоска ставится ребром.

Требуется расположение устройства по периметру здания не превышая расстояния 1 м от его стен или фундаментной плиты. Общее сопротивление контура не может превышать 40 Ом, если удельное сопротивление почвы менее 1 кОм*м в соответствии с ПУЭ.

Если подстанция имеет металлическую крышу, то ее заземляют, соединив с внешним контуром стальной проволокой диаметром 8 мм. Соединение производится с двух сторон объекта, диаметрально противоположных между собой. Требования ПУЭ предписывают защитить эту шину снижения на внешней стене здания от коррозии и механических повреждений.

Расчет заземляющего устройства подстанции выполняется для определения сопротивления распространения тока системы в землю.

Эта величина зависит от характеристик грунта, габаритов и конструкции заземляющего устройства и других факторов. Методика достаточно объемна и требует особого рассмотрения. Но стоит отметить, что чаще всего идут от противного. Имея требуемое сопротивление и определенный сортамент стали, например, определяют габариты заземлителя, количество горизонтальных электродов и глубину залегания в известном типе грунта.

Заземляющие устройства подстанций или ВЛ, равно как и заземление электростанции, играют исключительно важную роль в их эксплуатации. Кроме обеспечения нормальной работы этих объектов, они обеспечивают безопасность здоровья и жизни для людей, их обслуживающих.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации