Физическая масса элементарных частиц. Существуют ли кварки или из чего состоят элементарные частицы

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Введение

Э. ч. в точном значении этого термина - первичные, неразложимые частицы, из к-рых, по предположению, состоит вся материя. В понятии "Э. ч." в совр. физике находит выражение идея о первообразных сущностях, определяющих все наблюдаемые свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии.

Понятие "Э. ч." сформировалось в тесной связи с установлением дискретного характера строения вещества на микроскопич. уровне. Обнаружение на рубеже 19-20 вв. мельчайших носителей свойств вещества - молекул и атомов - и установление того факта, что молекулы построены из атомов, впервые позволило описать все наблюдаемые вещества как комбинации конечного, хотя и большого, числа структурных составляющих - атомов. Выявление в дальнейшем составных частей атомов - электронов и ядер, установление сложной природы самих ядер, оказавшихся построенными всего из двух частиц (нуклонов): протонов и нейтронов, существенно уменьшило кол-во дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями - Э. ч. Выяснившаяся в нач. 20 в. возможность трактовки эл--магн. поля как совокупности особых частиц - фотонов - дополнительно укрепила убеждённость в правильности такого подхода.

Тем не менее, сформулированное предположение, вообще говоря, является экстраполяцией известных фактов и сколько-нибудь строго обосновано быть не может. Нельзя с уверенностью утверждать, что частицы, элементарные в смысле приведённого определения, существуют. Не исключено также, что утверждение "состоит из..." на какой-то ступени изучения материи окажется лишённым содержания. От данного выше определения "элементарности" в этом случае придётся отказаться. Существование Э. ч.- это своего рода постулат, и проверка его справедливости- одна из важнейших задач физики.

Как правило, термин "Э. ч." употребляется в совр. физике не в своём точном значении, а менее строго - для наименования большой группы мельчайших наблюдаемых частиц материи, подчинённых условию, что они не являются атомами или атомными ядрами, т. е. объектами заведомо составной природы (исключение составляет протон - ядро атома водорода). Как показали исследования, эта группа частиц необычайно обширна. Помимо протона (р), нейтрона (n), электрона (е) и фотона (g) к ней относятся: пи-мезоны (p), мюоны (m), тау-лептоны (т), нейтрино трёх типов (v e , v m , v t), т. н. странные частицы (К-мезоны и гиперо-ны), очарованные частицы и прелестные (красивые) частицы (D- и B-мезоны и соответствующие барионы ),разнообразные резонансы ,в т. ч. мезоны со скрытым очарованием и прелестью (ncu-частщы, ипсилон-частицы )и, наконец, открытые в нач. 80-х гг. промежуточные векторные бозоны (W, Z) - всего более 350 частиц, в осн. нестабильных. Число частиц, включаемых по мере их открытия в эту группу, постоянно растёт, и можно уверенно утверждать, что оно будет расти и впредь. Очевидно, что такое огромное кол-во частиц не может выступать в качестве элементарных слагающих материи, и действительно, в 70-х гг. было показано, что большая часть перечисленных частиц (все мезоны и барионы) представляют собой составные системы. Частицы, входящие в эту последнюю группу, более точно следовало бы называть "субъядерными" частицами, т. к. они представляют собой специфические формы существования материи, неагрегированной в ядра. Использование названия "Э. ч." применительно ко всем упомянутым частицам имеет в осн. истории, причины и связано с периодом исследований (нач. 30-х гг.), когда единств. известными представителями данной группы были протон, нейтрон, электрон и частица эл--магн. поля - фотон. Тогда эти частицы с известным правом могли претендовать на роль Э. ч.

Открытие новых микроскопич. частиц постепенно разрушило эту простую картину строения материи. Однако вновь открываемые частицы по своим свойствам были в ряде отношений близки к первым четырём известным частицам: либо к протону и нейтрону, либо к электрону, либо к фотону. До тех пор пока кол-во таких частиц было не очень велико, сохранялось убеждение, что все они играют фундам. роль в строении материи, и их включали в категорию Э. ч. С нарастанием числа частиц от этого убеждения пришлось отказаться, но традиц. назв. "Э. ч." за ними сохранялось.

В соответствии со сложившейся практикой термин "Э. ч." будет употребляться ниже в качестве общего названия всех мельчайших частиц материи. В тех случаях, когда речь будет идти о частицах, претендующих на роль первичных элементов материи, при необходимости будет использоваться термин "истинно элементарные частицы ".

Краткие исторические сведения

Открытие Э. ч. явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в кон. 19 в. Оно было подготовлено детальными исследованиями спектров атомов, изучением элек-трич. явлений в жидкостях и газах, открытием фотоэлектричества, рентг. лучей, естеств. радиоактивности, свидетельствовавших о существовании сложной структуры материи.

Исторически первой открытой Э. ч. был электрон - носитель отрицательного элементарного электрич. заряда в атомах. В 1897 Дж. Дж. Томсон (J. J. Thomson) убедительно показал, что т. н. катодные лучи представляют собой поток заряж. частиц, к-рые впоследствии были названы электронами. В 1911 Э. Резерфорд (E. Rutherford), пропуская альфа-частицы от естеств. радиоакт. источника через тонкие фольги разл. веществ, пришёл к выводу, что положит. заряд в атомах сосредоточен в компактных образованиях- ядрах, а в 1919 обнаружил среди частиц, выбитых из атомных ядер, протоны - частицы с единичным положит. зарядом и массой, в 1840 раз превышающей массу электрона. Другая частица, входящая в состав ядра,- нейтрон - была открыта в 1932 Дж. Чедвиком (J. Chadwick) при исследованиях взаимодействия a-частиц с бериллием. Нейтрон имеет массу, близкую к массе протона, но не обладает электрич. зарядом. Открытием нейтрона завершилось выявление частиц, являющихся структурными элементами атомов и их ядер.

Вывод о существовании частицы эл--магн. поля - фотона-берёт своё начало от работы M. Планка (M. Planck, 1900). Для получения правильного описания спектра излучения абсолютно чёрного тела Планк вынужден был допустить, что энергия излучения делится на отд. порции (кванты). Развивая идею Планка, А. Эйнштейн в 1905 предположил, что эл--магн. излучение является потоком квантов (фотонов) и на этой основе объяснил закономерности фотоэффекта. Прямые эксперим. доказательства существования фотона были даны P. Милликеном (R. Millikan) в 1912-15 при исследовании фотоэффекта и А. Комптоном (A. Compton) в 1922 при изучении рассеяния g-квантов на электронах (см. Комптона эффект ).

Идея о существовании нейтрино - частицы, исключительно слабо взаимодействующей с веществом, принадлежит В. Паули (W. Pauli, 1930), указавшему, что подобная гипотеза позволяет устранить трудности с законом сохранения энергии в процессах бета-распада радиоакт. ядер. Экспериментально существование нейтрино было подтверждено при исследовании процесса обратного бета-распада лишь в 1956 [Ф. Райнес (F. Reines) и К. Коуэн (С. Cowan)].

С 30-х и до нач. 50-х гг. изучение Э. ч. было тесно связано с исследованием космических лучей . В 1932 в составе космич. лучей К. Андерсоном (С. Anderson) был обнаружен позитрон (е +)- частица с массой электрона, но с положит, электрич. зарядом. Позитрон был первой открытой античастицей . Существование позитрона непосредственно вытекает из релятивистской теории электрона, развитой П. Дираком (P. Dirac) в 1928-31 незадолго до обнаружения позитрона. В 1936 Андерсон и С. Неддер-мейер (S. Neddermeyer) обнаружили при исследовании космич. лучей мюоны (обоих знаков электрич. заряда) - частицы с массой примерно в 200 масс электрона, а в остальном удивительно близкие к нему по свойствам.

В 1947 также в космич. лучах группой С. Пауэлла (S. Powell) были открыты p + - и p - -мезоны с массой в 274 электронные массы, играющие важную роль во взаимодействии протонов с нейтронами в ядрах. Существование подобных частиц было предположено X. Юкавой (H. Yukawa) в 1935.

Кон. 40-х-нач. 50-х гг. ознаменовались открытием большой группы частиц с необычными свойствами, получивших назв. "странные". Первые частицы этой группы - К + -и К - -мезоны, L-гипероны - были открыты в космич. лучах, последующие открытия странных частиц были сделаны на ускорителях заряженных частиц - установках, создающих интенсивные потоки протонов и электронов высоких энергий. При столкновении с веществом ускоренные протоны и электроны рождают новые Э. ч., к-рые затем регистрируются с помощью сложных детекторов.

С нач. 50-х гг. ускорители превратились в осн. инструмент для исследования Э. ч. В 90-х гг. макс. энергии частиц, разогнанных на ускорителях, составили сотни млрд. электронвольт (ГэВ), и процесс наращивания энергий продолжается. Стремление к увеличению энергий ускоренных частиц обусловлено тем, что на этом пути открываются возможности изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц, а также возможностью рождения всё бo-лее тяжёлых частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира.

Ввод в строй протонных ускорителей с энергиями в миллиарды эВ позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигмаги-перон (I960). В 1964 была открыта самая тяжёлая частица из группы гиперонов - W - (с массой ок. двух масс протона).

Начиная с 60-х гг. с помощью ускорителей выявлено большое число крайне неустойчивых (по сравнению с другими нестабильными Э. ч.) частиц, получивших назв. резо-нансов . Массы большинства превышают массу протона. [Первый из них-D (1232), распадающийся на p-мезон и нуклон,- известен с 1953.] Оказалось, что резо-нансы составляют осн. часть Э. ч.

В 1974 обнаружены массивные (3-4 протонные массы) и в то же время относительно устойчивые пси-частицы, со временем жизни примерно в 10 3 раз большим времени жизни, типичного для резонансов. Они оказались тесно связанными с новым семейством Э. ч.- очарованных, первые представители к-рого (D-мезоны, L с -барионы) открыты в 1976.

В 1977 обнаружены ещё более тяжёлые (ок. 10 протонных масс) ипсилон-частицы, так же, как и пси-частицы, аномально устойчивые для частиц таких больших масс. Они явились провозвестниками существования ещё одного необычного семейства прелестных, или красивых, частиц. Его представители - В-мезоны - открыты в 1981-83, L b -барионы - в 1992.

В 1962 выяснено, что в природе существует не один тип нейтрино, а, по крайней мере, два: электронное v e и мюонное v m . 1975 принёс открытие т-лептона, частицы почти в 2 раза тяжелее протона, но в остальном повторяющей свойства электрона и мюона. Вскоре стало ясно, что с ним связан ещё один тип нейтрино v т.

Наконец, в 1983 в ходе экспериментов на протон-антипротонном коллайдере (установке для осуществления встречных столкновений пучков ускоренных частиц) открыты самые тяжёлые из известных Э. ч.: заряженные промежуточные бозоны W b (m W 80 ГэВ) и нейтральный промежуточный бозон Z 0 (m Z = 91 ГэВ).

T. о., почти за 100 лет, прошедшие после открытия электрона, выявлено огромное число разнообразных микрочастиц материи. Мир Э. ч. оказался достаточно сложно устроенным. Неожиданными во мн. отношениях оказались свойства обнаруженных Э. ч. Для их описания, помимо характеристик, заимствованных из классич. физики, таких, как электрич. заряд, масса, момент количества движения, потребовалось ввести много новых спец. характеристик, в частности для описания странных, очарованных и прелестных (красивых) Э. ч.- странность [К. Нишиджима (К. Nishijima), M. Гелл-Ман (M. Gell-Mann), 1953], очарование [Дж. Бьёркен (J. Bjorken), Ш. Глэшоу (Sh. Glashow), 1964], красота . Уже названия приведённых характеристик отражают необычность описываемых ими свойств Э. ч.

Изучение внутр. строения материи и свойств Э. ч. с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классич. механики и , что потребовали для своего описания совершенно новых теоретич. построений. Такими новыми теориями явились прежде всего частная (спец.) относительности теория (Эйнштейн, 1905) и квантовая механика (H. Бор, Л. де Бройль, В. Гейзенберг, Э. Шрёдингер, M. Борн; 1924-27). Теория относительности и квантовая механика ознаменовали собой подлинную революцию в науке о природе и заложили основы для описания явлений микромира. Однако для описания процессов, происходящих с Э. ч., оказалось недостаточно. Понадобился следующий шаг - квантование классич. полей (т. н. вторичное квантование )и разработка квантовой теории поля . Важнейшими этапами на пути её развития были: формулировка квантовой электродинамики (Дирак, 1929), квантовой теории бета-распада [Э. Ферми (E. Fermi), 1934] - предшественницы совр. феноменологической теории слабых взаимодействий, квантовой мезодинамики (X. Юкава, 1935). Этот период завершился созданием последоват. вычислит. аппарата квантовой электродинамики [С. Томона-га (S. Tomonaga), P. Фейнман (R. Feynman), Ю. Швин-гер (J. Schwinger); 1944-49], основанного на использовании техники перенормировки .Эта техника была обобщена в дальнейшем и на др. варианты квантовой теории поля.

Существенный этап последующего развития квантовой теории поля был связан с разработкой представлений о т. н. калибровочных полях или Янга - Миллса полях (Ч. Янг, P. Миллс, 1954), которые позволили установить взаимосвязь свойств симметрии взаимодействия с полей. Квантовая теория калибровочных полей в настоящее время является основой для описания взаимодействий Э. ч. У этой теории имеется ряд серьёзных успехов, и всё же она ещё очень далека от завершённости и не может пока претендовать на роль всеобъемлющей теории Э. ч. Возможно, понадобятся ещё не одна перестройка всех представлений и гораздо более глубокое понимание взаимосвязи свойств микрочастиц и свойств пространства-времени, прежде чем такая теория будет построена.

Основные свойства элементарных частиц. Классы взаимодействий

Все Э. ч--объекты исключительно малых масс и размеров. У большинства из них массы m имеют порядок величины массы протона, равной 1,6·10 -24 г (заметно меньше лишь масса электрона: 9·10 -28 г). Определённые из опыта размеры протона, нейтрона, p- и К-мезонов по порядку величины равны 10 -13 см (см. "Размер" элементарной частицы) . У электрона и мюона определить размеры не удалось, известно лишь, что они меньше 10 -16 см. Микроскопич. массы и размеры Э. ч. лежат в основе квантовой специфики их поведения. Характерные длины волн, которые следует приписать Э. ч. в квантовой теории (=/тс-комптоновская длина волны) , по порядку величин близки к типичным размерам, на к-рых осуществляется их взаимодействие (напр., для p-мезона /тс 1,4 · 10 -13 см). Это и приводит к тому, что квантовые закономерности являются определяющими в поведении Э. ч.

Наиб. важное квантовое свойство всех Э. ч--их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Э. ч.- это специфич. кванты материи, более точно - кванты соответствующих полей физических . Все процессы с Э. ч. протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, напр., процесс рождения p + -мезона при столкновении двух протонов (p+pp+ n + p +) или процесс электрона и позитрона, когда взамен исчезнувших частиц возникают, напр., два g-кванта (е + +е - g+ g). Но и процессы упругого рассеяния частиц, напр. е - +р-> е - +р, также связаны с поглощением нач. частиц и рождением конечных частиц. Распад нестабильных Э. ч. на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в к-ром продукты распада рождаются в момент самого распада и до этого момента не существуют. В этом отношении распад Э. ч. подобен распаду возбуждённого атома на осн. состояние и фотон. Примерами распадов Э. ч. могут служить (знак "тильда" над символом частицы здесь и в дальнейшем соответствует античастице).

Разл. процессы с Э. ч. при относительно небольших энергиях [до 10 ГэВ в системе центра масс (с. ц. м.)] заметно отличаются по интенсивности их протекания. В соответствии с этим порождающие их взаимодействия Э. ч. можно феноменологически разделить на неск. классов: сильное взаимодействие, электромагнитное взаимодействие и слабое взаимодействие .Все Э. ч. обладают, кроме того, гравитационным взаимодействием .

Сильное взаимодействие выделяется как взаимодействие, к-рое ответственно за процессы с Э. ч., протекающие с наибольшей интенсивностью по сравнению с др. процессами. Оно приводит к самой сильной связи Э. ч. Именно сильное взаимодействие обусловливает связь протонов и нейтронов в ядрах атомов и обеспечивает исключит. прочность этих образований, лежащую в основе стабильности вещества в земных условиях.

Эл--магн. взаимодействие характеризуется как взаимодействие, в основе к-рого лежит связь с эл--магн. полем. Процессы, обусловленные им, менее интенсивны, чем процессы сильного взаимодействия, а порождаемая им связь Э. ч. заметно слабее. Эл--магн. взаимодействие, в частности, ответственно за процессы излучения фотонов, за связь атомных электронов с ядрами и связь атомов в молекулах.

Слабое взаимодействие, как показывает само название, слабо влияет на поведение Э. ч. или вызывает очень медленно протекающие процессы изменения их состояния. Иллюстрацией этого утверждения может служить, напр., тот факт, что нейтрино, участвующие только в слабом взаимодействии, беспрепятственно пронизывают, напр., толщу Земли и Солнца. Слабое взаимодействие ответственно за сравнительно медленные распады т. н. квазистабильных Э. ч. Как правило, времена жизни этих частиц лежат в диапазоне 10 -8 -10 -12 с, тогда как типичные времена переходов для сильного взаимодействия Э. ч. составляют 10 -23 с.

Гравитац. взаимодействия, хорошо известные по своим макроскопич. проявлениям, в случае Э. ч. в силу чрезвычайной малости их масс на характерных расстояниях ~10 -13 см дают исключительно малые эффекты. В дальнейшем (за исключением раздела 7) они обсуждаться не будут.

"Силу" разл. классов взаимодействий можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами соответствующих констант взаимодействий . Для сильного, эл--магн., слабого и гравитац. взаимодействий протонов при энергии процессов ~ 1 ГэВ BC. ц. м. эти параметры соотносятся как 1:10 -2:10 -10:10 -38 . Необходимость указания ср. энергии процесса связана с тем, что в феноменологич. теории слабого взаимодействия безразмерный параметр зависит от энергии. Кроме того, интенсивности разл. процессов очень по-разному зависят от энергии, а феноменологическая теория слабого взаимодействия при энергиях больших M W в с. ц. м. перестаёт быть справедливой. Всё это приводит к тому, что относит. роль разл. взаимодействий, вообще говоря, меняется с ростом энергии взаимодействующих частиц и разделение взаимодействий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях.

По совр. представлениям, при энергиях выше M W (т. е. 80 ГэВ в с. ц. м.) слабое и эл--магн. взаимодействия сравниваются по силе и выступают как проявление единого электрослабого взаимодействия . Выдвинуто также привлекательное предположение о возможном выравнивании констант всех трёх видов взаимодействий, включая сильное, при сверхвысоких энергиях, больших 10 16 ГэВ (модель т. н. Великого объединения) .

В зависимости от участия в тех или иных видах взаимодействий все изученные Э. ч., за исключением фотона, W - и Z-бозонов, разбиваются на две осн. группы: адроны и лептоны . Адроны характеризуются прежде всего тем, что они участвуют в сильном взаимодействии, наряду с эл--магнитным и слабым, тогда как лептоны участвуют только в эл--магнитном и слабом взаимодействиях. (Наличие общего для той и другой группы гравитац. взаимодействия подразумевается.) Массы адронов по порядку величины близки к массе протона (т р ) , иногда превышая её в неск. раз; мин. массу среди адронов имеет p-мезон: т p 1 / 7 m p , . Массы лептонов, известных до 1975-76, были невелики (0,1 m p)- отсюда их название. Однако более поздние данные свидетельствуют о существовании тяжёлых т-лептонов с массой ок. двух масс протона.

Адроны-самая обширная группа из известных Э. ч. В неё входят все барионы и мезоны, а также т. н. резонан-сы (т. е. большая часть упомянутых 350 Э. ч.). Как уже указывалось, эти частицы имеют сложное строение и на самом деле не могут рассматриваться как элементарные. Лептоны представлены тремя заряженными (е, m, т) и тремя нейтральными частицами (v e , v m , v т). Фотон, W + и Z 0 -бозоны образуют вместе важную группу калибровочных бозонов, осуществляющих перенос эл--слабого взаимодействия. Элементарность частиц из этих двух последних групп пока не подвергается серьёзному сомнению.

Характеристики элементарных частиц

Каждая Э. ч., наряду со спецификой присущих ей взаимодействий, описывается набором дискретных значений определ. физ. величин или своими характеристиками. В ряде случаев эти дискретные значения выражаются через целые или дробные числа и нек-рый общий множитель- единицу измерения; об этих числах говорят как о квантовых числах Э. ч. и задают только их, опуская единицы измерения.

Общие характеристики всех Э. ч--масса (т) , время жизни (т), спин (J )и электрич. заряд (Q) .

В зависимости от времени жизни т Э. ч. делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными, в пределах точности совр. измерений, являются электрон (т>2 · 10 22 лет), протон (т>5 · 10 32 лет), фотон и все типы нейтрино. К квазистабильным относят частицы, распадающиеся за счёт эл--магн. и слабого взаимодействий. Их времена жизни лежат в интервале от 900 с для свободного нейтрона до 10 -20 с для S 0 -гиперона. Резо-нансами наз. Э. ч., распадающиеся за счёт сильного взаимодействия. Их характерные времена жизни 10 -22 -10 -24 с. В табл. 1 они помечены значком * и вместо т приведена более удобная величина: ширина резонанса Г=/т.

Спин Э. ч. J является целым или полуцелым кратным величине. В этих единицах спин p- и К-мезонов равен 0, у протона, нейтрона и всех лептонов J= 1/2, у фотона, W b -и Z-бозонов J= 1. Существуют частицы и с большим спином. Величина спина Э. ч. определяет поведение ансамбля одинаковых (тождественных) частиц или их статистику (Паули, 1940). Частицы полуцелого спина подчиняются Ферми - Дирака статистике (отсюда назв. фермионы), к-рая требует антисимметрии волновой ф-ции системы относительно перестановки пары частиц (или нечётного числа таких перестановок) и, следовательно, "запрещает" двум частицам полуцелого спина находиться в одинаковом состоянии (Паули принцип ).Частицы целого спина подчиняются Базе - Эйнштейна статистике (отсюда назв. бозоны), к-рая требует волновой ф-ции относительно перестановок частиц и допускает нахождение любого числа частиц целого спина в одном и том же состоянии. Статистич. свойства Э. ч. оказываются существенными в тех случаях, когда при рождении или распаде образуется неск. одинаковых частиц.


П р и м е ч а н и е. Знаком * слева помечены частицы (как правило, резонансы), для к-рых вместо времени жизни т приведена ширина Г=/t. Истинно нейтраль ные частицы помещены посередине между частицами и античастицами. Члены одного изотопического мульти плета расположены на одной строке (в тех случаях , когда известны характеристики каждого члена мульти плета,- с небольшим смещением по вертикали). Изме нение знака чётности P у антибарионов не указано, рав но как и изменение знаков S, С, b y всех античастиц. Для лептонов и промежуточных бозонов внутренняя чётность не является точным (сохраняющимся) кванто вым числом и потому не обозначена. Цифры в скобках в конце приводимых физических величин обозначают существующую ошибку в значении этих величин, относящуюся к последним из приведённых цифр .

Электрич. заряды изученных Э. ч. (кроме ) являются целыми кратными величине е= 1,6·10 -19 Кл (4,8 · 10 -10 CGS), наз. элементарным электрическим зарядом . У известных Э. ч. Q = 0, + 1, b2.

Помимо указанных величин, Э. ч. дополнительно характеризуются ещё рядом квантовых чисел, наз. "внутренними". Лептоны несут специфич. лептонное число (L )трёх типов: электронное L e , равное +1 для е - и v e , мюонное L m , равное +1 для m - и v m , и L t , равное +1 для т - и v t .

Для адронов L= 0, и это ещё одно проявление их отличия от лептонов. В свою очередь, значит. части адронов следует приписать т. н. барионное число В (|B| = I) . Адроны с B=+ 1 образуют подгруппу барионов (сюда входят протон, нейтрон, гипероны; очарованные и прелестные бары-оны; барионные резонансы), а адроны с B = 0 - подгруппу мезонов (p-мезоны, К-мезоны, очарованные и прелестные мезоны, бозонные резонансы). Назв. подгрупп адронов происходят от греч. слов baruV - тяжёлый и mEsоV - средний, что на нач. этапе исследований Э. ч. отражало сравнит. величины масс известных тогда барионов и мезонов. Более поздние данные показали, что массы барионов и мезонов сопоставимы. Для лептонов B =0. Для фотона, W b - и Z-бозонов B = 0 и L = 0.

Изученные барионы и мезоны подразделяются на уже упоминавшиеся совокупности: обычных (нестранных) частиц (протон, нейтрон, p-мезоны), странных частиц (гипероны, К-мезоны), очарованных и прелестных частиц. Этому разделению отвечает наличие у адронов особых квантовых чисел: странности S , очарования С и прелести (красоты) b с допустимыми значениями (по модулю) 0, 1, 2, 3. Для обычных частиц S =C=b =0, для странных частиц S 0, C = b = 0, для очарованных частиц С0, b = 0, а для прелестных b O. Наряду с этими квантовыми числами часто используется также квантовое число гиперзаряд Y=B+S+C + b , имеющее, по-видимому, более фундам. значение.

Уже первые исследования обычных адронов выявили наличие среди них семейств частиц, близких по массе и с очень сходными свойствами по отношению к сильному взаимодействию, но с разл. значениями электрич. заряда. Протон и нейтрон (нуклоны) были первым примером такого семейства. Такие семейства позже были обнаружены среди странных, очарованных и прелестных адронов. Общность свойств частиц, входящих в такие семейства, является отражением существования у них одинакового значения квантового числа - изотопического спина I , принимающего, как и обычный спин, целые и полуцелые значения. Сами семейства обычно наз. изотопическими мультиплетами . Число частиц в мультиплете n связано с I соотношением n = 2I +1. Частицы одного изотопич. мультиплета отличаются друг от друга значением "проекции" изотопич. спина I 3 , и соответствующие значения Q даются выражением


Важная характеристика адронов - внутренняя чётность P , связанная с операцией пространств. инверсии: P принимает значения + 1.

Для всех Э. ч. с ненулевыми значениями хотя бы одного из квантовых чисел Q, L, В, S, С, b существуют античастицы с теми же значениями массы т , времени жизни т, спина J и для адронов изотопич. спина I , но с противоположными знаками указанных квантовых чисел, а для барионов с противоположным знаком внутр. чётности Р . Частицы, не имеющие античастиц, наз. истинно нейтральными частицами . Истинно нейтральные адроны обладают спец. - зарядовой чётностью (т. е. чётностью по отношению к операции зарядового сопряжения) С со значениями + 1; примерами таких частиц могут служить p 0 - и h-мезоны (С=+1), r 0 - и f-мезоны (С=-1)и др.

Квантовые числа Э. ч. разделяются на т о ч н ы е (т. е. такие, к-рые связаны с физ. величинами, сохраняющимися во всех процессах) и н е т о ч н ы е (для к-рых соответствующие физ. величины в ряде процессов не сохраняются). Спин J связан со строгим законом сохранения и потому является точным квантовым чис.чом. Другое точное квантовое число-электрич. заряд Q . В пределах точности проведённых измерений сохраняются также квантовые числа B и L , хотя для этого не существует серьёзных теоретич. предпосылок. Более того, наблюдаемая барионная асимметрия Вселенной наиб. естественно может быть истолкована в предположении нарушения сохранения барионного числа В (А. Д. Сахаров, 1967). Тем не менее наблюдаемая стабильность протона есть отражение высокой степени точности сохранения B и L (нет, напр., распада pe + + p 0). Не наблюдаются также распады m - e - +g, т - m - +g и т. д. Однако большинство квантовых чисел адронов неточные. Изотопич. спин, сохраняясь в сильном взаимодействии, не сохраняется в эл--магн. и слабом взаимодействиях. Странность, очарование и прелесть сохраняются в сильном и эл--магн. взаимодействиях, но не сохраняются в слабом взаимодействии. Слабое взаимодействие изменяет также внутр. и зарядовую чётности совокупности частиц, участвующих в процессе. С гораздо большей степенью точности сохраняется комбинированная чётность CP (СР-чётностъ) , однако и она нарушается в нек-рых процессах, обусловленных . Причины, вызывающие несохранение мн. квантовых чисел адронов, не ясны и, по-видимому, связаны как с природой этих квантовых чисел, так и с глубинной структурой эл--слабого взаимодействия.

В табл. 1 приведены наиб. хорошо изученные Э. ч. из групп лептонов и адронов и их квантовые числа. В спец. группу выделены калибровочные бозоны. Раздельно даны частицы и античастицы (изменение P у антибарионов не указано). Истинно нейтральные частицы помещены в центре первой колонки. Члены одного изотопич. мультиплета расположены в одной строке, иногда с небольшим смещением (в тех случаях, когда даются характеристики каждого члена мультиплета).

Как уже отмечалось, группа лептонов весьма немногочисленна, а массы частиц в осн. малы. Для масс всех типов нейтрино существуют довольно жёсткие ограничения сверху, но каковы их истинные значения, предстоит ещё выяснить.

Осн. часть Э. ч. составляют адроны. Увеличение числа известных Э. ч. в 60-70-х гг. происходило исключительно за счёт расширения данной группы. Адроны в своём большинстве представлены резонансами. Обращает на себя внимание тенденция к росту спина по мере роста массы резонансов; она хорошо прослеживается на разл. группах мезонов и барионов с заданными I , S и С. Следует также отметить, что странные частицы несколько массивнее обычных частиц, очарованные частицы массивнее странных, а прелестные частицы массивнее очарованных.

Классификация элементарных частиц. Кварковая модель адронов

Если классификация калибровочных бозонов и лептонов не вызывает особых проблем, то большое число адронов уже в нач. 50-х гг. явилось основанием для поиска закономерностей в распределении масс и квантовых чисел барионов и мезонов, к-рые могли бы составить основу их классификации. Выделение изотопич. мультиплетов адронов было первым шагом на этом пути. С матем. точки зрения группировка адронов в изотопич. мультиплеты отражает наличие у сильного взаимодействия симметрии, связанной с вращения группой , более формально, с унитарной группой SU (2) - группой преобразований в комплексном двумерном пространстве [см. Симметрия SU ( 2 )] . Предполагается, что эти преобразования действуют в нек-ром специфич. внутр. пространстве - т. н. изотопич. пространстве, отличном от обычного. Существование изотопич. пространства проявляется только в наблюдаемых свойствах симметрии. На матем. языке изотопич. мультиплеты суть неприводимые представления группы симметрии SU (2).

Концепция симметрии как фактора, определяющего существование разл. групп и семейств Э. ч. в совр. теории, является доминирующей при классификации адронов и других Э. ч. Предполагается, что внутр. квантовые числа Э. ч., позволяющие объединять те или иные группы частиц, связаны со спец. типами симметрии, возникающими за счёт свободы преобразований в особых внутр. пространствах. Отсюда и происходит назв. "внутренние квантовые числа".

Внимательное рассмотрение показывает, что странные и обычные адроны в совокупности образуют более широкие объединения частиц с близкими свойствами, чем изотопич. мультиплеты. Их принято называть супермульти-плетами . Число частиц, входящих в наблюдаемые супер-мультиплеты, равно 8 и 10. С точки зрения симметрии возникновение супермультиплетов истолковывается как проявление существования у сильного взаимодействия группы симметрии более широкой, чем группа SU( 2) , а именно унитарной группы SU (3)- группы преобразований в трёхмерном комплексном пространстве [Гелл-Ман, Ю. Нееман (Y. Neeman), 1961]; см. Симметрия SU(3) . Соответствующая симметрия получила назв. унитарной симметрии. Группа SU (3) имеет, в частности, неприводимые представления с числом компонент 8 и 10, к-рые можно сопоставить наблюдаемым супермультиплетам: октету и декуплету. Примерами супермультиплетов могут служить следующие группы частиц с одинаковыми значениями J P (т. е. с одинаковыми парами значений J и P):


Унитарная симметрия менее точная, чем изотопич. симметрия. В соответствии с этим различие в массах частиц, входящих в октеты и декуплеты, довольно значительно. По этой же причине разбиение адронов на супермульти-плеты сравнительно просто осуществляется для Э. ч. не очень больших масс. При больших массах, когда имеется много разл. частиц с близкими массами, это разбиение осуществить сложнее.

Обнаружение среди адронов выделенных супермульти-плетов фиксированных размерностей, отвечающих опре-дел. представлениям унитарной группы SU (3), явилось ключом к важнейшему заключению о существовании у адронов особых структурных элементов - кварков .

Гипотеза о том, что наблюдаемые адроны построены из частиц необычной природы - кварков, несущих спин 1 / 2 , обладающих сильным взаимодействием, но в то же время, не принадлежащих классу адронов, была выдвинута Дж. Цвейгом (G. Zweig) и независимо Гелл-Маном в 1964 (см. Кварковые модели) . Идея кварков была подсказана матем. структурой представлений унитарных групп. Ma-тем. формализм открывает возможность описания всех представлений группы SU(n )(и, следовательно, всех связанных с ней мультиплетов адронов) на основе перемножения самого простого (фундам.) представления группы, содержащего n компонент. Необходимо только допустить существование особых частиц, связанных с этими компонентами, что и было сделано Цвейгом и Гелл-Маном для частного случая группы SU( 3) . Эти частицы были названы кварками.

Конкретный кварковый состав мезонов и барионов был выведен из того факта, что мезоны, как правило, входят в супермультиплеты с числом частиц, равным 8, а бари-оны-8 и 10. Эта закономерность легко воспроизводится, если предположить, что мезоны составлены из кварка и антикварка, символически: M=(q ) , а барион-из трёх кварков, символически: B = (qqq) . B силу свойств группы SU (3) 9 мезонов разбиваются на супермультиплеты из 1 и 8 частиц, а 27 барионов-на супермультиплеты, содержащие 1, 10 и дважды по 8 частиц, что и объясняет наблюдаемую выделенность октетов и декуплетов.

T. о., выявленное экспериментами 60-х гг. существование супермультиплетов, составленных из обычных и странных адронов, позволило сделать вывод о том, что все эти адроны построены из 3 кварков, обычно обозначаемых и, d, s (табл. 2). Вся совокупность известных к тому моменту фактов прекрасно согласовывалась с этим предложением.

Табл. 2 .-Характеристики кварков


* Предварительная экспериментальная оценка .

Последующее обнаружение пси-частиц, а затем ипсилон-частиц, очарованных и прелестных адронов показало, что для объяснения их свойств трёх кварков недостаточно и необходимо допустить существование ещё двух типов кварков c и b , несущих новые квантовые числа: очарование и прелесть. Это обстоятельство не поколебало, однако, основные положения кварковой модели. Был сохранён, в частности, центр. пункт её схемы строения адронов: M=(q ), B = (qqq) . Более того, именно на основе предположения о кварковом строении пси- и ипсилон-частиц удалось дать физ. толкование их во многом необычным свойствам.

Исторически открытие пси- и ипсилон-частиц, равно как и новых типов очарованных и прелестных адронов, явилось важным этапом в утверждении представлений о кварковом строении всех сильновзаимодействующих частиц. Согласно совр. теоретич. моделям (см. ниже), следовало ожидать существования ещё одного - шестого t -кварка, к-рый и был обнаружен в 1995.

Указанная выше кварковая структура адронов и матем. свойства кварков как объектов, связанных с фундам. представлением группы SU(n) , приводят к следующим квантовым числам кварков (табл. 2). Обращают на себя внимание необычные (дробные) значения электрич. заряда Q , а также В , не встречающиеся ни у одной из изученных Э. ч. С индексом a у каждого типа кварка q i (i = 1, 2, 3, 4, 5, 6) связана особая характеристика кварков - цвет ,к-рой нет у наблюдаемых адронов. Индекс a принимает значения 1, 2, 3, т. е. каждый тип кварка (q i )представлен тремя разновидностями q a i . Квантовые числа каждого типа кварка не меняются при изменении цвета, поэтому табл. 2 относится к кваркам любого цвета. Как было показано позднее, величины q a (для каждого i ) при изменении a с точки зрения их трансформац. свойств следует рассматривать как компоненты фундам. представления ещё одной группы SU (3), цветовой, действующей в цветовом трёхмерном пространстве [см. Цветовая симметрия SU (3)].

Необходимость введения цвета вытекает из требования антисимметрии волновой ф-ции системы кварков, образующих барионы. Кварки, как частицы со спином 1 / 2 , должны подчиняться статистике Ферми-Дирака. Между тем имеются барионы, составленные из трёх одинаковых кварков с одинаковой ориентацией спинов: D ++ (), W - (), к-рые явно симметричны относительно перестановок кварков, если последние не обладают дополнит. степенью свободы. Такой дополнит. степенью свободы и является цвет. С учётом цвета требуемая антисимметрия легко восстанавливается. Уточнённые ф-ли структурного состава мезонов и барионов выглядят при этом следующим образом:


где e abg - полностью антисимметричный тензор (Леви-Чи-виты символ )(1/ 1/ -нормировочные множители). Важно отметить, что ни мезоны, ни барионы не несут цветовых индексов (лишены цвета) и являются, как иногда говорят, "белыми" частицами.

В табл. 2 приведены лишь "эффективные" массы кварков. Это связано с тем, что кварки в свободном состоянии, несмотря на многочисленные тщательные их поиски, не наблюдались. В этом, кстати, проявляется ещё одна особенность кварков как частиц совершенно новой, необычной природы. Поэтому прямых данных о массах кварков нет. Имеются лишь косвенные оценки величин масс кварков, к-рые могут быть извлечены из их разл. динамических проявлений в характеристиках адронов (включая массы последних), а также в разл. процессах происходящих с ад-ронами (распады и т. п.). Для массы t -кварка дана предварительная эксперим. оценка.

Всё многообразие адронов возникает за счёт разл. сочетаний и-, d-, s-, с - и b -кварков, образующих связанные состояния. Обычным адронам соответствуют связанные состояния, построенные только из и - и d -кварков [для мезонов с возможным участием комбинаций (s .), (с ) и (b )]. Наличие в связанном состоянии, наряду с u - и d -кварками, одного s-, с - или b -кварка означает, что соответствующий адрон странный (S = - 1), очарованный (C= + 1) или прелестный (b = - 1). В состав бариона может входить два и три s -кварка (соответственно с - и b -кварка), т. е. возможны дважды и трижды странные (очарованные, прелестные) барионы. Допустимы также сочетания разл. числа s - и с -, b -кварков (особенно в барионах), к-рые соответствуют "гибридным" формам адронов (странно-очарованным, странно-прелестным). Очевидно, что чем больше s-, с - или b -кварков содержит адрон, тем он массивнее. Если сравнивать основные (не возбуждённые) состояния адронов, именно такая картина и наблюдается (табл. 1).

Поскольку спин кварков равен 1 / 2 , приведённая выше кварковая структура адронов имеет своим следствием целочисленный спин у мезонов и полуцелый - у барионов, в полном соответствии с экспериментом. При этом в состояниях, отвечающих орбитальному моменту l =0, в частности в осн. состояниях, значения спина мезонов должны равняться 0 или 1 (для антипараллельной и параллельной ориентации спинов кварков), а спина барионов: 1 / 2 или 3 / 2 (для спиновых конфигураций и ). С учётом того, что внутр. чётность системы кварк-антикварк отрицательна, значения J P для мезонов при l = 0 равны 0 - и 1 - , для барионов: 1 / 2 + и 3 / 2 + . Именно эти значения наблюдаются у адронов, имеющих наименьшую массу при заданных значениях I и S , С, b .

В качестве иллюстрации в табл. 3 и 4 приведён квар-ковый состав мезонов с J P = 0 - и барионов J P = 1 / 2 + (всюду предполагается необходимое суммирование по цветам кварков).

Табл. 3.- Кварковый состав изученных мезонов с J P =0 - ()


Табл. 4.- Кварковый состав изученных барионов с J P = 1/2 + ()


П р и м е ч а н и е. Символ {} означает симметризацию по переменным частицам; символ -антисимметризацию .

T. о., кварковая модель естеств. образом объясняет происхождение осн. групп адронов и их наблюдаемые квантовые числа. Более детальное динамическое рассмотрение позволяет также сделать ряд полезных заключений относительно взаимосвязи масс внутри разл. семейств адронов.

Правильно передавая специфику адронов с наименьшими массами и спинами, кварковая модель естеств. образом объясняет также общее большое число адронов и преобладание среди них резонансов. Многочисленность адронов есть отражение их сложного строения и возможности существования разл. возбуждённых состояний кварковых систем. Все возбуждённые состояния кварковых систем неустойчивы относительно быстрых переходов за счёт сильного взаимодействия в нижележащие состояния. Они-то и образуют осн. часть резонансов. Небольшую долю резонансов составляют также кварковые системы с параллельной ориентацией спинов (за исключением W -). Кварковые конфигурации с антипараллельной ориентацией спинов, относящиеся к осн. состояниям, образуют квазистабильные адроны и стабильный протон.

Возбуждения кварковых систем происходят как за счёт изменения вращат. движения кварков (орбитальные возбуждения), так и за счёт изменения их пространств. расположения (радиальные возбуждения). В первом случае рост массы системы сопровождается изменением суммарного спина J и чётности P системы, во втором случае увеличение массы происходит без изменения J P .

При формулировке кварковой модели кварки рассматривались как гипотетич. структурные элементы, открывающие возможность очень удобного описания адронов. В последующие годы были проведены эксперименты, к-рые позволяют говорить о кварках как о реальных материальных образованиях внутри адронов. Первыми были эксперименты по рассеянию электронов на нуклонах на очень большие углы. Эти эксперименты (1968), напоминающие классич. опыты Резерфорда по рассеянию a-частиц на атомах, выявили наличие внутри нуклона точечных заряж. образований (см. Партоны ).Сравнение данных этих экспериментов с аналогичными данными по рассеянию нейтрино на нуклонах (1973-75) позволили сделать заключение о ср. величине квадрата электрич. заряда этих точечных образований. Результат оказался близким к ожидаемым дробным значениям (2 / 3) 2 е 2 и (1 / 3) 2 е 2 . Изучение процесса рождения адронов при аннигиляции электрона и позитрона, к-рый предположительно идёт через следующие стадии:

указало на наличие двух групп адронов, т. н. струй (см. Струя адронная ),генетически связанных с каждым из образующихся кварков, и позволило определить спин кварков. Он оказался равным 1 / 2 . Общее число рождённых в этом процессе адронов свидетельствует также о том, что в промежуточном состоянии каждый тип кварка представлен тремя разновидностями, т. е. кварки трёхцветны.

T. о., квантовые числа кварков, заданные на основании теоретич. соображений, получили всестороннее эксперим. подтверждение. Кварки фактически приобрели статус новых Э. ч. и являются серьёзными претендентами на роль истинно Э. ч. для сильновзаимодействующих форм материи. Число известных видов кварков невелико. До длин <=10 -16 см кварки выступают как точечные бесструктурные образования. Бесструктурность кварков, конечно, может отражать лишь достигнутый уровень исследования этих материальных образований. Однако ряд специфич. особенностей кварков даёт известные основания предполагать, что кварки являются частицами, замыкающими цепь структурных составляющих сильновзаимодействующей материи.

От всех других Э. ч. кварки отличаются тем, что в свободном состоянии они, по-видимому, не существуют, хотя имеются чёткие свидетельства их существования в связанном состоянии. Эта особенность кварков, скорее всего, связана со спецификой их взаимодействия, порождаемого обменом особыми частицами - глюонами , приводящего к тому, что силы притяжения между ними не ослабляются с расстоянием. Как следствие, для отделения кварков друг от друга требуется бесконечная энергия, что, очевидно, невозможно (теория т. н. конфайнмента или пленения кварков; см. Удержание цвета ).Реально при попытке отделить кварки друг от друга происходит образование дополнит. адронов (т.н. адронизация кварков). Невозможность наблюдения кварков в свободном состоянии делает их совершенно новым типом структурных единиц вещества. Неясно, напр., можно ли в этом случае ставить вопрос о составных частях кварков и не обрывается ли тем самым последовательность структурных составляющих материи. Всё сказанное подводит к выводу, что кварки, наряду с лептонами и калибровочными бозонами, также не имеющими наблюдаемых признаков структуры, образуют группу Э. ч., к-рая имеет наибольшие основания претендовать на роль истинно Э. ч.

Элементарные частицы и квантовая теория поля. Стандартная модель взаимодействий

Для описания свойств и взаимодействий Э. ч. в совр. теории существ. значение имеет понятие физического поля, к-рое ставится в соответствие каждой частице. Поле есть специфич. форма распределённой в пространстве материи; оно описывается ф-цией, задаваемой во всех точках пространства-времени и обладающей определ. трансформац. свойствами по отношению к преобразованиям Лоренца группы (скаляр, спинор, вектор и т. д.) и групп "внутр." симметрии (изотопич. скаляр, изотопич. спинор и т. д.). Эл--магн. поле, обладающее свойствами четырёхмерного вектора A m (x )(m= 1, 2, 3, 4),- исторически первый пример физ. поля. Поля, сопоставляемые Э. ч., имеют квантовую природу, т. е. их энергия и импульс слагаются из множества отд. порций - квантов, причём полная энергия e k и импульс p k кванта связаны соотношением спец. теории относительности: e 2 k 2 k с 2 + т 2 с 4 . Каждый такой квант и есть Э. ч. с массой т , с заданной энергией e k и импульсом p k . Квантами эл--магн. поля являются фотоны, кванты др. полей соответствуют всем остальным известным Э. ч. Ma-тем. аппарат квантовой теории поля (КТП) позволяет описать рождение и уничтожение частицы в каждой пространственно-временной точке.

Трансформац. свойства поля определяют осн. квантовые числа Э. ч. Трансформационные свойства по отношению к преобразованиям группы Лоренца задают спин частиц: скаляру соответствует спин J= 0, спинору - спин J= 1 / 2 , вектору - спин J= 1 и т.д. Трансформац. свойства полей по отношению к преобразованиям "внутр." пространств ("зарядового пространства", "изотопического пространства", "унитарного пространства", "цветного пространства") определяют существование таких квантовых чисел, как L, В, I, S , С, b , a для кварков и глюонов также и цвета. Введение "внутр." пространств в аппарате теории - пока чисто формальный приём, к-рый, однако, может служить указанием на то, что размерность физ. пространства-времени, отражающаяся в свойствах Э. ч., реально больше четырёх - т.е. больше размерности пространства-времени, характерного для всех макроскопич. физ. процессов.

Масса Э. ч. не связана непосредственно с трансформац. свойствами полей. Это дополнительная их характеристика, происхождение к-рой не понято до конца.

Для описания процессов, происходящих с Э. ч., в КТП используется Лагранжев формализм лагранжиане , построенном из полей, участвующих во взаимодействии частиц, заключены все сведения о свойствах частиц и динамике их поведения. Лагранжиан включает в себя два гл. слагаемых: лагранжиан , описывающий поведение свободных полей, и лагранжиан взаимодействия , отражающий взаимосвязь разл. полей и возможность превращения Э. ч. Знание точной формы позволяет в принципе, используя аппарат матрицы рассеяния (S -матрицы), рассчитывать вероятности переходов от исходной совокупности частиц к заданной конечной совокупности частиц, происходящих под влиянием существующего между ними взаимодействия. T. о., установление структуры , открывающее возможность количеств. описания процессов с Э. ч., является одной из центр. задач КТП.

Существ. продвижение в решении этой задачи было достигнуто в 50-70-х гг. на основе развития идеи о векторных калибровочных полях, сформулированной в уже упоминавшейся работе Янга и Миллса. Отталкиваясь от известного положения о том, что всякий наблюдаемый экспериментально закон сохранения связан с инвариантностью описывающего систему лагранжиана относительно преобразований нек-рой группы симметрии (Нётер теорема ),Янг и Миллс потребовали, чтобы эта инвариантность выполнялась локально, т. е. имела место при произвольной зависимости преобразований от точки пространства-времени. Оказалось, что выполнение этого требования, физически связанного с тем, что взаимодействие не может мгновенно передаваться от точки к точке, возможно только при введении в структуру лагранжиана спец. калибровочных полей векторной природы, определ. образом трансформирующихся при преобразованиях группы симметрии. Причём структуры свободного лагранжиана и оказались в указанном подходе тесно связанными: знание в значит. мере предопределяло вид

Последнее обстоятельство обусловлено тем, что требование локальной калибровочной инвариантности может быть выполнено только в том случае, когда во всех производных, действующих на свободные поля в , осуществлена замена Здесь g - константа взаимодействия; V a m - калибровочные поля; T a - генераторы группы симметрии в матричном представлении, соответствующем свободному полю; r - размерность группы.

В силу сказанного в видоизменённом лагранжиане автоматически возникают члены строго определ. структуры, описывающие взаимодействие полей, исходно входивших в , со вновь введёнными калибровочными полями. При этом калибровочные поля осуществляют роль переносчиков взаимодействия между исходными полями. Конечно, поскольку в лагранжиане появились новые калибровочные поля, свободный лагранжиан должен быть дополнен членом, связанным с ними, и подвергнуться процедуре видоизменений, описанной выше. При точном соблюдении калибровочной инвариантности калибровочные поля отвечают бозонам с нулевой массой. При нарушении симметрии масса бозонов отлична от нуля.

В таком подходе задача построения лагранжиана, отражающего динамику взаимодействующих полей, по существу сводится к правильному отбору системы полей, составляющих первоначальный свободный лагранжиан и фиксации его формы. Последняя, впрочем, при заданных трансформационных свойствах относительно группы Лоренца однозначно определяется требованием релятивистской инвариантности и очевидным требованием вхождения только структур, квадратичных по полям.

T. о., основным для описания динамики является вопрос о выборе системы первичных полей, образующих , т. е. фактически всё тот же центр. вопрос физики Э. ч.: "Какие частицы (и соответственно поля) следует считать наиболее фундаментальными (элементарными) при описании наблюдаемых частиц материи?".

Совр. теория, как уже отмечалось, выделяет в качестве таких частиц бесструктурные частицы со спином 1 / 2: кварки и лептоны. Такой выбор позволяет, опираясь на принцип локальной калибровочной инвариантности, построить весьма успешную схему описания сильного и эл--слабого взаимодействий Э. ч., получившую назв. с т а н д а р т н о й м о д е л и.

Модель исходит прежде всего из допущения, что для сильного взаимодействия имеет место точная симметрия SU c (3), отвечающая преобразованиям в "цветовом" трёхмерном пространстве. При этом предполагается, что кварки преобразуются по фундам. представлению группы SU c (3). Выполнение требования локальной калибровочной инвариантности для кваркового лагранжиана приводит к появлению в структуре теории восьми безмассовых калибровочных бозонов, названных глюонами, взаимодействующих с кварками (и между собой) строго определ. образом (Фритцш, Гёлл-Ман, 1972). Разработанная на этой основе схема описания сильного взаимодействия получила назв. квантовой хромодинамики . Правильность её предсказаний подтверждена многочисл. экспериментами, в т. ч. получены убедительные свидетельства существования глюонов. Имеются также серьёзные основания полагать, что аппарат квантовой хромодинамики содержит в себе объяснение явления конфайнмента.

При построении теории эл--слабого взаимодействия было использовано то обстоятельство, что существование пар лептонов с одинаковым лептонным числом (L e , L v , L t), но с разным электрич. зарядом (е - , v e ; m - , v m ; т - , v т) можно трактовать как проявление симметрии, связанной с группой т.н. слабого изоспина SU сл (2), а сами пары рассматривать как спинорные (дублетные) представления этой группы. Аналогичная трактовка возможна в отношении пар кварков, участвующих в слабом взаимодействии. Отметим, что рассмотрение в рамках этой схемы слабого взаимодействия с участием кварка b снеобходимостью ведёт к заключению о существовании у него изотопического партнёра кварка t , составляющего пару (t, b) . Выделение слабым взаимодействием определ. спиральности (левой) у участвующих в нём фермионов дополнительно можно рассматривать как проявление существования симметрии U сл (1), связанной со слабым гиперзарядом Y сл. При этом левым и правым фермионам следует приписывать разные значения гиперзаряда Y сл, а правые фермионы нужно рассматривать как изотопические скаляры. В принятом построении естественно возникает соотношение Q = I 3 cл + 1 / 2 Y сл, уже встречавшееся нам у адронов.

Т.о., внимательный анализ эл--слабого взаимодействия лептонов и кварков позволяет выявить у них наличие симметрии (заметно, впрочем, нарушенной), отвечающей группе SU сл (2)U cл ( 1) . Если отвлечься от нарушения этой симметрии и воспользоваться строгим условием локальной калибровочной инвариантности, то возникнет теория эл--слабого взаимодействия кварков и лептонов, в к-рой фигурируют четыре безмассовых бозона (два заряженных и два нейтральных) и две константы взаимодействия, соответствующие группам SU сл (2) и U сл (1). В этой теории члены лагранжиана, отвечающие взаимодействию с заряж. бозонами, правильно воспроизводят известную структуру заряженных токов , но не обеспечивают наблюдаемое в слабых процессах короткодействие, что и неудивительно, т. к. нулевая масса промежуточных бозонов ведёт к дальнодействию. Отсюда следует лишь то, что в ре-алистич. теории слабого взаимодействия массы промежуточных бозонов должны быть конечными. Это находится в соответствии и с фактом нарушенности симметрии SU сл (2)U сл (1).

Однако прямое введение конечных масс промежуточных бозонов в построенный описанным выше образом лагранжиан невозможно, т. к. входит в противоречие с требованием локальной калибровочной инвариантности. Учесть непротиворечивым образом нарушение симметрии и добиться появления в теории конечных масс промежуточных бозонов удалось с помощью важного предположения о существовании в природе особых скалярных полей F (Хиггса полей) , взаимодействующих с фермионными и калибровочными полями и обладающих специфическим самовзаимодействием, ведущим к явлению спонтанного нарушения симметрии [П. Хиггс (P. Higgs), 1964]. Введение в лагранжиан теории в простейшем варианте одного дублета (по группе слабого изоспина) полей Хиггса приводит к тому, что вся система полей переходит к новому, более низкому по энергии вакуумному состоянию, отвечающему нарушенной симметрии. Если исходно вакуумное среднее от поля F было равно нулю <Ф> 0 = 0, то в новом состоянии <Ф> 0 = Ф 0 0. Нарушение симметрии и появление в теории конечного F 0 приводит за счёт Хиггса механизма к неисчезающей массе заряж. промежуточных бозонов W + и к возникновению смешивания (линейной комбинации) двух нейтральных бозонов, фигурирующих в теории. В результате смешивания возникают безмассовое эл--магн. поле, взаимодействующее с эл--магн. током кварков и лептонов, и поле массивного нейтрального бозона Z 0 , взаимодействующее с нейтральным током строго заданной структуры. Параметр (угол) смешивания (Вайн-берга угол )нейтральных бозонов в этой схеме задаётся отношением констант взаимодействия групп U сл (l) и SU сл (2): tgq W =g"/g . Этот же параметр определяет связь масс m W и m Z (m Z = m W / cosq W )и связь электрич. заряда е с константой группы слабого изоспина g: e = g sinq W . Обнаружение в 1973 при изучении рассеяния нейтрино нейтральных слабых токов, предсказанных описанной выше схемой, и последовавшее затем в 1983 открытие W -и Z-бозонов с массами соответственно 80 ГэВ и 91 ГэВ блестяще подтвердили всю концепцию единого описания эл--магн. и слабого взаимодействий. Эксперим. определение значения sin 2 q W = 0,23 показало, что константа g и электрич. заряд е близки по величине. Стало понятно, что "слабость" слабого взаимодействия при энергиях, заметно меньших m W и m Z , в осн. обусловлена большой величиной массы промежуточных бозонов. Действительно, константа феноменологической четырёхфермионной теории слабого взаимодействия Ферми G F в изложенной схеме равна G F =g 2 /8m 2 W . Это означает, что эфф. константа слабого взаимодействия при энергии в с. ц. м. ~т р равна G F m p 2 10 -5 , а её квадрат близок к 10 -10 , т.е. к значению, приводившемуся выше. При энергиях же в с.ц.м., больших или порядка m W , единственным параметром, характеризующим слабое взаимодействие, становится величина g 2 / 4p или е 2 / 4p, т.е. слабое и эл--магн. взаимодействия становятся сравнимыми по интенсивности и должны рассматриваться совместно.

Построение единого описания эл--магн. и слабого взаимодействий является важным достижением теории калибровочных полей, сравнимым по значимости с разработкой Максвеллом в кон. 19 в. единой теории эл--магн. явлений. Количеств. предсказания теории эл--слабого взаимодействия во всех проведённых измерениях оправдывались с точностью 1%. Важным физ. следствием указанного построения является заключение о существовании в природе частицы нового типа - нейтрального Хиггса бозона . На нач. 90-х гг. такая частица обнаружена не была. Проведённые поиски показали, что её масса превышает 60 ГэВ. Теория не даёт, однако, точного предсказания для величины массы бозона Хиггса. Можно лишь утверждать, что значение его массы не превышает 1 ТэВ. Оценочные значения массы этой частицы лежат в диапазоне 300-400 ГэВ.

Итак, "стандартная модель" отбирает в качестве фун-дам. частиц три пары кварков (и, d )(с , s) (t, b )и три пары лептонов (v e ,e - )(v m ,m -) (v t , т -), обычно группируемых в соответствии с величиной их масс в семейства (или поколения) следующим образом:


и постулирует, что их взаимодействия удовлетворяют симметрии SU сл (3)SU сл (2)U сл (l). Как следствие, получается теория, в к-рой переносчиками взаимодействия являются калибровочные бозоны: глюоны, фотон, W b и Z. И хотя "стандартная модель" весьма успешно справляется с описанием всех известных фактов, относящихся к Э.ч., всё же, скорее всего, она является промежуточным этапом в построении более совершенной и всеобъемлющей теории Э.ч. В структуре "стандартной модели" ещё достаточно много произвольных, эмпирически определяемых параметров (значений масс кварков и лептонов, значений констант взаимодействия, углов смешивания и т. п.). Число поколений фермионов в модели также не определено. Пока эксперимент уверенно утверждает лишь то, что число поколений не превышает трёх, если в природе не существует тяжёлых нейтрино с массами в неск. десятков ГэВ.

С точки зрения свойств симметрии взаимодействий более естественно было бы ожидать, что во всеобъемлющей теории Э.ч. вместо прямого произведения групп симметрии будет фигурировать одна группа симметрии G с одной отвечающей ей константой взаимодействия. Группы симметрии "стандартной модели" в этом случае можно было бы трактовать как продукты редукции большой группы при нарушении связанной с ней симметрии. На этом пути, в принципе, могла бы возникнуть возможность Великого объединения взаимодействий. Формальной основой такого объединения может служить свойство изменения с энергией эфф. констант взаимодействия калибровочных полей g i 2 /4p = a i (i =1, 2, 3), возникающее при учёте высших порядков теории (т. н. бегущие константы). При этом константа a 1 связана с группой U(I); a 2 - с группой SU( 2); a 3 -с группой SU( 3) . Упомянутые очень медленные (логарифмические) изменения описываются выражением

связывающим значения эфф. констант a i (M )и a i (m) при двух различающихся значениях энергии: M и m (M > m). Характер этих изменений разный для разл. групп симметрии (и, следовательно, разл. взаимодействий) и даётся коэффициентами b i , вбирающими в себя информацию как о структуре групп симметрии, так и об участвующих во взаимодействии частицах. Поскольку b 1 , b 2 и b 3 различны, допустима возможность того, что, несмотря на заметные расхождения величин a i -1 (m) при исследованных энергиях m, при очень больших энергиях M все три значения a i -1 (M )совпадут, т. е. будет реализовано Великое объединение взаимодействий. Тщательный анализ, однако, показал, что в рамках стандартной модели, используя известные значения a i -1 (m), получить совпадение всех трёх значений a i -1 (М )при каком-то большом M невозможно, т.е. вариант теории с Великим объединением в этой модели не реализуем. В то же время было выяснено, что в схемах, отличных от стандартной модели, с изменённым составом осн. (фундам.) полей или частиц, Великое объединение может иметь место. Изменения в составе осн. частиц ведут к изменениям в значениях коэффициентов "b i " и тем самым обеспечивают возможность совпадения a i (M ) при больших M .

Руководящей идеей при выборе изменённого состава осн. частиц теории явилась идея возможного существования в мире Э. ч. суперсимметрии , к-рая устанавливает определ. взаимосвязи между частицами целого и полуцелого спина, фигурирующими в теории. Для соблюдения требований суперсимметрии, напр. в случае стандартной модели, каждой частице должна быть поставлена в соответствие частица со спином, смещённым на 1 / 2 - Причём в случае точной суперсимметрии все эти частицы должны иметь одинаковые массы. Так, кваркам и лептонам спина 1 / 2 должны быть поставлены в соответствие их суперсимметричные партнёры (суперпартнёры) со спином нуль, всем калибровочным бозонам со спином 1 -их суперпартнёры со спином 1 / 2 , а бозону Хиггса спина нуль - суперпартнёр со спином 1 / 2 . Поскольку в исследованной области энергии суперпартнёры кварков, лептонов и калибровочных бозонов заведомо не наблюдаются, суперсимметрия, если она существует, должна быть заметно нарушенной, а массы суперпартнёров должны иметь значения, значительно превышающие значения масс известных фермионов и бозонов.

Последовательное выражение требования суперсимметрии находят в минимальной суперсимметричной модели (MCCM), в к-рой в дополнение к уже перечисленным изменениям в составе частиц стандартной модели число бозонов Хиггса увеличивается до пяти (из них два являются заряженными и три - нейтральными частицами). Соответственно в модели возникают пять суперпартнёров бозонов Хиггса со спином 1 / 2 - MCCM - простейшее обобщение стандартной модели на случай суперсимметрии. Значение M , при к-ром происходит совпадение a i (M )(Великое объединение), в MCCM примерно равно 10 16 ГэВ.

С гипотезой о существовании суперсимметрии связана одна из перспективных возможностей развития теории калибровочных полей, разрешающая к тому же ряд её внутр. проблем, связанных с устойчивостью фигурирующих в ней параметров. Суперсимметрия, как было отмечено, позволяет сохранить в теории Э. ч. привлекательную возможность Великого объединения взаимодействий. Решающим подтверждением факта существования суперсимметрии явилось бы обнаружение суперпартнёров известных частиц. По оценкам, их массы лежат в диапазоне от сотен ГэВ до 1 ТэВ. Частицы таких масс будут доступны для изучения на протонных коллайдерах следующего поколения.

Проверка гипотезы о существовании суперсимметрии и поиски суперсимметричных частиц, безусловно, одна из важнейших задач физики Э. ч., к-рой в ближайшем будущем, несомненно, будет уделяться первоочередное внимание.

Некоторые общие проблемы теории элементарных частиц

Новейшее развитие физики частиц явно выделило из всех микросоставляющих материи группу частиц, играющих особую роль и имеющих наибольшие основания (на нач. 90-х гг.) именоваться истинно Э. ч. К ней относятся фундам. фермионы спина 1 / 2 - лептоны и кварки, составляющие три поколения, и калибровочные бозоны спина 1 (глюоны, фотоны и промежуточные бозоны), являющиеся переносчиками сильного и эл--слабого взаимодействий. К этой группе, скорее всего, следует присоединить частицу со спином 2, гравитон ,как переносчика гравитац. взаимодействия, связывающего все частицы. Особую группу составляют частицы спина 0, бозоны Хиггса, пока, впрочем, не обнаруженные.

Многие вопросы тем не менее остаются без ответа. Так, остаётся неясным, существует ли физ. критерий, фиксирующий число поколений элементарных фермионов. Не понятно, насколько принципиальным является отличие в свойствах кварков и лептонов, связанное с присутствием у первых цвета, или это отличие специфично только для изученной области энергии. К этому вопросу примыкает вопрос о физ. природе Великого объединения, поскольку в его формализме кварки и лептоны рассматриваются как объекты с близкими свойствами.

Важно понять, не указывает ли существование различных "внутр." квантовых чисел кварков и лептонов (В, L, I, S, С, b и т. д.) на более сложную геометрию микромира, отвечающую большему числу измерений, чем привычная нам четырёхмерная геометрия макроскопич. пространства-времени. С этим вопросом тесно связан вопрос о том, какова макс. группа симметрии G , к-рой удовлетворяют взаимодействия Э. ч. и в к-рую вложены группы симметрии, проявляющие себя в изученной области энергий. Ответ на этот вопрос помог бы определить предельное число переносчиков взаимодействия Э. ч. и выяснить их свойства. Не исключено, что макс. группа G фактически отражает свойства симметрии нек-pогo многомерного пространства. Этот круг идей нашёл известное отражение в теории суперструн , к-рые являются аналогами обычных струн в пространствах с числом измерений, большим четырёх (обычно в пространстве 10 измерений). Теория суперструн трактует Э. ч. как проявления специфических возбуждений суперструн, отвечающие разл. спинам. Считается, что лишние (сверх четырёх) измерения не обнаруживают себя в наблюдениях в силу т. н. компактификации, т. е. образования замкнутых подпространств с характерными размерами ~10 -33 см. Внеш. проявлением существования этих подпространств являются наблюдаемые "внутр." квантовые числа Э. ч. Каких-либо данных, подтверждающих правильность подхода к трактовке свойств Э. ч., связанного с представлением о суперструнах, пока не существует.

Как видно из сказанного, в идеале завершённая теория Э. ч. должна не только правильно описывать взаимодействия заданной совокупности частиц, отобранных в качестве фундаментальных, но и содержать в себе объяснение того, какими факторами определяется число этих частиц, их квантовые числа, константы взаимодействия, значения их масс и т. п. Должны быть также поняты причины выделен-ности наиб. широкой группы симметрии G и одновременно природа механизмов, обусловливающих нарушение симметрии по мере перехода к более низким энергиям. В этом плане первостепенное значение имеет прояснение роли бозонов Хиггса в физике Э.ч. Модели, к-рые предлагает совр. теория Э. ч., ещё далеки от удовлетворения всем перечисленным критериям.

Описание взаимодействий Э.ч., как уже отмечалось, связано с калибровочными теориями поля. Эти теории имеют развитый матем. аппарат, к-рый позволяет производить расчёты процессов с Э.ч. на том уровне строгости, что и в квантовой электродинамике. Однако в аппарате калибровочных теорий поля, в его совр. формулировке, присутствует один существ. изъян, общий с квантовой электродинамикой,- в процессе вычислений в нём появляются бессмысленные бесконечно большие выражения. С помощью спец. приёма переопределения наблюдаемых величин (масс и констант взаимодействия) - перенормировки - удаётся устранить бесконечности из окончат. результатов вычислений. Однако процедура перенормировки - чисто формальный обход трудности, существующей в аппарате теории, к-рая на каком-то уровне точности может сказаться на степени согласия предсказаний теории с измерениями.

Появление бесконечностей в вычислениях связано с тем, что в лагранжианах взаимодействий поля разных частиц отнесены к одной точке x , т. е. предполагается, что частицы точечные, а четырёхмерное пространство-время остаётся плоским вплоть до самых малых расстояний. В действительности указанные предположения, по-видимому, неверны по неск. причинам:

а) истинно Э. ч., как носителям конечной массы, естественней всего приписать, хоть и очень малые, но конечные размеры, если мы хотим избежать бесконечной плотности материи;

б) свойства пространства-времени на малых расстояниях, скорее всего, радикально отличны от его макроскопич. свойств (начиная с нек-рого характерного расстояния, к-рое обычно наз. фундаментальной длиной);

в) на самых малых расстояниях (~ 10 -33 см) сказывается изменение геом. свойств пространства-времени за счёт влияния квантовых гравитац. эффектов (флуктуации метрики; см. Квантовая теория гравитации) .

Возможно, эти причины тесно связаны между собой. Так, именно учёт гравитац. эффектов наиб. естественно приводит к размерам истинно Э.ч. порядка 10 -33 см, а фундам. длина может фактически совпадать с т. н. планковской длиной l Пл = 10 -33 см, где x -гравитац. постоянная (M. Марков, 1966). Любая из этих причин должна привести к модификации теории и устранению бесконечностей, хотя практическое выполнение этой модификации может оказаться очень сложным.

Одна из интересных возможностей последовательного учёта эффектов гравитации связана с распространением идей суперсимметрии на гравитац. взаимодействие (теория супергравитации , в особенности расширенной супергравитации). Совместный учёт гравитац. и других видов взаимодействий приводит к заметному сокращению числа расходящихся выражений в теории, но ведёт ли супергравитация к полной ликвидации расходимостей в расчётах, строго не доказано.

T. о., логическим завершением идей Великого объединения, скорее всего, станет включение в общую схему рассмотрения взаимодействий Э. ч. также и гравитац. взаимодействия, учёт к-рого может оказаться принципиальным на самых малых расстояниях. Именно на базе одновременного учёта всех видов взаимодействий наиб. вероятно ожидать создания будущей теории Э. ч.

Лит.: Элементарные частицы и компенсирующие поля. Сб. ст., пер. с англ., M., 1964; Коккедэ Я., Теория кварков, пер. с англ., M.. 1971; Марков M. А., О природе материи, M., 1976; Глэ-шоу Ш., Кварки с цветом и ароматом, пер. с англ.. "УФН", 1976, т. 119, в. 4, с. 715; Бернстейн Дж., Спонтанное нарушение симметрии, калибровочные теории, механизм Хиггса и т.п., в кн.: Квантовая теория калибровочных полей. Сб. ст., пер. с англ., M., 1977 (Новости фундаментальной физики, в. 8); Боголюбов H. H., Ширков Д. В., Квантовые поля, 2 изд., M., 1993; Окунь Л. Б., Лептоны и кварки, 2 изд., M., 1990.

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ - первичные, далее неразложимые частицы, из которых, как полагают, состоит вся материя. В современной физике термин «элементарные частицы» обычно употребляется для обозначения большой группы мельчайших частиц материи, не являющихся атомами (см. Атом) или атомными ядрами (см. Ядро атомное); исключение составляет ядро атома водорода - протон.

К 80-м годам 20 века науке было известно более 500 элементарных частиц, большинство которых является нестабильными. К элементарным частицам относятся протон (p), нейтрон (n), электрон (e), фотон (γ), пи-мезоны (π), мюоны (μ), тяжелые лептоны (τ + , τ -), нейтрино трех типов - электронные (V e), мюонные (V μ) и связанные с так называемым тяжелым дептоном (V τ), а также «странные» частицы (К-мезоны и гипероны), разнообразные резонансы, мезоны со скрытым очарованием, «очарованные» частицы, ипсилон-частицы (Υ), «красивые» частицы, промежуточные векторные бозоны и др. Появился самостоятельный раздел физики - физика элементарных частиц.

История физики элементарных частиц началась с 1897 года, когда Томсоном (J. J. Thomson) был открыт электрон (см. Электронное излучение); в 1911 году Милликен (R. Millikan) измерил величину его электрического заряда. Понятие «фотон» - квант света - было введено Планком (М. Planck) в 1900 году. Прямые экспериментальные доказательства существования фотона были получены Милликеном (1912-1915) и Комптоном (A. Н. Compton, 1922). В процессе изучения атомного ядра Э. Резерфорд открыл протон (см. Протонное излучение), а в 1932 году Чедвик (J. Chadwick) - нейтрон (см. Нейтронное излучение). В 1953 году было экспериментально доказано существование нейтрино, которое Паули (W. Pauli) предсказал еще в 1930 году.

Элементарные частицы делят на три группы. Первая представлена единственной элементарной частицей - фотоном, γ-квантом, или квантом электромагнитного излучения. Вторая группа - это лептоны (греческий leptos мелкий, легкий), участвующие, кроме электромагнитных, еще и в слабых взаимодействиях. Известно 6 лептонов: электрон и электронное нейтрино, мюон и мюонное нейтрино, тяжелый τ-лептон и соответствующий нейтрино. Третью - основную группу элементарных частиц составляют адроны (греческий hadros большой, сильный), которые участвуют во всех видах взаимодействий, в том числе и в сильных взаимодействиях (см. ниже). К адронам относятся частицы двух типов: барионы (греч. barys тяжелый) - часстицы с полуцелым спином и массой не меньше массы протона, и мезоны (греческий mesos средний) - частицы с нулевым или целым спином (см. Электронный парамагнитный резонанс). К барионам принадлежат протон и нейтрон, гипероны, часть резонансов и «очарованных» частиц и некоторые другие элементарные частицы. Единственным стабильным барионом является протон, остальные барионы нестабильны (нейтрон в свободном состоянии - нестабильная частица, однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Мезоны получили свое название потому, что массы первых открытых мезонов - пи-мезона и К-мезона - имели значения, промежуточные между массами протона и электрона. Позже были открыты мезоны, масса которых превышает массу протона. Адроны характеризуются также странностью (S) - нулевым, положительным или отрицательным квантовым числом. Адроны с нулевой странностью называют обычными, а с S ≠ 0 - странными. В 1964 г. Цвейг (G. Zweig) и Гелл-Манн (М. Gell-Mann) независимо друг от друга высказали предположение о кварковой структуре адронов. Результаты ряда экспериментов свидетельствуют о том, что кварки являются реальными материальными образованиями внутри адронов. Кварки обладают рядом необычных свойств, например дробным электрическим зарядом и др. В свободном состоянии кварков не наблюдали. Полагают, что все адроны образуются за счет различных сочетаний кварков.

Вначале элементарные частицы исследовали при изучении радиоактивного распада (см. Радиоактивность) и космического излучения (см.). Однако начиная с 50-х годов 20 века исследования элементарных частиц производят на ускорителях заряженных частиц (см.), в которых ускоренные частицы бомбардируют мишень или сталкиваются с частицами, летящими навстречу. При этом частицы взаимодействуют между собой, в результате чего происходит их взаимопревращение. Именно таким образом было открыто большинство элементарных частиц.

Каждая элементарная частица наряду со спецификой присущих ей взаимодействий описывается набором дискретных значений определенных физических величин, выражаемых целыми или дробными числами (квантовыми числами). Общими характеристиками всех элементарных частиц являются масса (m), время жизни (т), спин (J) - собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого, электрический заряд (Ω) и магнитный момент (μ). Электрические заряды изученных элементарных частиц по абсолютной величине являются целыми кратными числами от заряда электрона (е≈1,6*10 -10 к). У известных элементарных частиц электрические заряды равны 0, ±1 и ±2.

Все элементарные частицы имеют соответствующие античастицы, масса и спин которых равны массе и спину частицы, а электрический заряд, магнитный момент и другие характеристики равны по абсолютной величине и противоположны по знаку. Например, античастицей электрона является позитрон - электрон с положительным электрическим зарядом. Элементарная частица, тождественная своей античастице, называется истинно нейтральной, например нейтрон и антинейтрон, нейтрино и антинейтрино и т. д. При взаимодействии античастиц друг с другом происходит их аннигиляция (см.).

При попадании элементарной частицы в материальную среду они взаимодействуют с ней. Различают сильное, электромагнитное, слабое и гравитационное взаимодействия. Сильное взаимодействие (сильнее электромагнитного) возникает между элементарными частицами, находящимися на расстоянии менее 10 -15 м (1 ферми). При расстояниях более 1,5 ферми сила взаимодействия между частицами близка к нулю. Именно сильные взаимодействия между элементарными частицами обеспечивают исключительную прочность атомных ядер, лежащую в основе стабильности вещества в земных условиях. Характерной особенностью сильного взаимодействия является его независимость от электрического заряда. К сильному взаимодействию способны адроны. Сильные взаимодействия обусловливают распад короткоживущих частиц (время жизни порядка 10 -23 - 10 -24 сек.), которые называют резонансами.

Электромагнитному взаимодействию подвержены все заряженные элементарные частицы, фотоны и нейтральные частицы, обладающие магнитным моментом (например, нейтроны). В основе электромагнитных взаимодействий лежит связь с электромагнитным полем. Силы электромагнитного взаимодействия примерно в 100 раз слабее сил сильного взаимодействия. Основная сфера действия электромагнитного взаимодействия - атомы и молекулы (см. Молекула). Такое взаимодействие определяет структуру твердых тел, характер хим. процессов. Оно не ограничивается расстоянием между элементарными частицами, поэтому размер атома примерно в 10 4 раз больше размера атомного ядра.

Слабые взаимодействия лежат в основе чрезвычайно медленно протекающих процессов с участием элементарных частиц. Например, нейтрино, обладающие слабым взаимодействием, могут беспрепятственно пронизывать толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады так называемых квазистабильных элементарных частиц, время жизни которых находится в пределах 10 8 - 10 -10 сек. Элементарные частицы, рожденные при сильном взаимодействии (за время 10 -23 -10 -24 сек.), но распадающиеся медленно (10 -10 сек.), называют странными.

Гравитационные взаимодействия между элементарными частицами дают чрезвычайно малые эффекты из-за ничтожности масс частиц. Этот вид взаимодействия хорошо изучен на макрообъектах, имеющих большую массу.

Многообразие элементарных частиц с разными физическими характеристиками объясняет трудность их систематизации. Из всех элементарных частиц только фотоны, электроны, нейтрино, протоны и их античастицы фактически являются стабильными, так как обладают большим временем жизни. Эти частицы представляют собой конечные продукты самопроизвольного превращения других элементарных частиц. Рождение элементарных частиц может происходить в результате первых трех типов взаимодействий. Для сильно взаимодействующих частиц источником рождения являются реакции сильного взаимодействия. Лептоны, что наиболее вероятно, возникают при распадах других элементарных частиц либо рождаются парами (частица + античастица) под воздействием фотонов.

Потоки элементарных частиц формируют ионизирующие излучения (см.), вызывающие ионизацию нейтральных молекул среды. Биологический эффект элементарных частиц связывают с образованием в облученных тканях и жидкостях организма веществ с высокой химической активностью. К таким веществам относятся свободные радикалы (см. Радикалы свободные), перекиси (см.) и другие. Элементарные частицы могут оказывать и прямое действие на био-молекулы и надмолекулярные структуры, вызывать разрыв внутримолекулярных связей, деполимеризацию высокомолекулярных соединений и т. п. Определенное значение в характере действия элементарных частиц на организм могут иметь процессы миграции энергии и образования метастабильных соединений, возникающих в результате длительного сохранения состояния возбуждения в некоторых макромолекулярных субстратах. В клетках подавляется или извращается активность ферментных систем, изменяется структура клеточных мембран и поверхностных клеточных рецепторов, что приводит к повышению проницаемости мембран и изменению диффузионных процессов, сопровождающихся явлениями денатурации белков, дегидратации тканей, нарушением внутренней среды клетки. Поражаемость клеток в значительной степени зависит от интенсивности их митотического деления (см. Митоз) и обмена веществ: с повышением этой интенсивности радиопоражаемость тканей увеличивается (см. Радиочувствительность). На этом свойстве потоков элементарные частицы - ионизирующего облучения - основано их применение для лучевой терапии (см.), особенно при лечении злокачественных новообразований. Проникающая способность заряженных элементарных частиц в большой степени зависит от линейной передачи энергии (см.), то есть от средней энергии, поглощаемой средой в месте прохождения заряженной частицы, отнесенной к единице ее пути.

Повреждающее действие потока элементарных частиц особенно сказывается на стволовых клетках кроветворной ткани, эпителии яичек, тонкой кишки, кожи (см. Лучевая болезнь, Лучевые повреждения). В первую очередь поражаются системы, находящиеся во время облучения в состоянии активного органогенеза и дифференцировки (см. Критический орган).

Биологическое и терапевтическое действие элементарных частиц зависит от их вида и дозы излучения (см. Дозы ионизирующих излучений). Так, например, при воздействии рентгеновского излучения (см. Рентгенотерапия), гамма-излучения (см. Гамма-терапия) и протонного излучения (см. Протонная терапия) на все тело человека в дозе около 100 рад наблюдается временное изменение кроветворения; внешнее воздействие нейтронного излучения (см. Нейтронное излучение) ведет к образованию в организме различных радиоактивных веществ, например радионуклидов натрия, фосфора и др. При попадании в организм радионуклидов, являющихся источниками бета-частиц (электронов или позитронов) или гамма-квантов, происходит так называемое внутреннее облучение организма (см. Инкорпорирование радиоактивных веществ). Особенно опасны в этом отношении быстро резорбирующиеся радионуклиды с равномерным распределением в организме, напр. тритий (3H) и полоний-210.

Радионуклиды, являющиеся источниками элементарных частиц и участвующие в обмене веществ, используют в радиоизотопной диагностике (см.).

Библиогр.: Ахиезер А. И. и Рекало М. П. Биография элементарных частиц, Киев, 1983, библиогр.; Боголюбов Н. Н. и Широков Д. В. Квантовые поля, М., 1980; Борн М. Атомная физика, пер. с англ., М., 1965; Джонс X. Физика радиологии, пер. с англ.. М., 1965; Кронгауз А. Н., Ляпидевский В. К. и Фролова А. В. Физические основы клинической дозиметрии, М., 1969; Лучевая терапия с помощью излучений высокой энергии, под ред. И. Беккера и Г. Шуберта, пер. с нем., М., 1964; Тюбиана М. и др. Физические основы лучевой терапии и радиобиологии, пер. с франц., М., 1969; Шпольский Э. В. Атомная физика, т. 1, М., 1984; Янг Ч. Элементарные частицы, пер. с англ.. М., 1963.

Р. В. Ставнцкий.

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ , в узком смысле - частицы, к-рые нельзя считать Состоящими из других частиц. В совр. физике термин "элементарные частицы" используют в более широком смысле: так наз. мельчайшие частицы материи, подчиненные условию, что они не являются и (исключение составляет ); иногда по этой причине элементарные частицы называют субъядерными частицами. Большая часть таких частиц (а их известно более 350) являются составными системами.
Э лементарные частицы участвуют в электромагнитном, слабом, сильном и гравитационном взаимодействиях. Из-за малых масс элементарных частиц их гравитационное взаимод. обычно не учитывается. Все элементарные частицы разделяют на три осн. группы. Первую составляют т. наз. бозоны- переносчики электрослабого взаимодействия. Сюда относится фотон, или квант электромагнитного излучения. Масса покоя фотона равна нулю, поэтому скорость распространения электромагнитных волн в (в т. ч. световых волн) представляет собой предельную скорость распространения физ. воздействия и является одной из фундам. физ. постоянных; принято, что с = (299792458 1,2) м/с.
Вторая группа элементарных частиц - лептоны, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов: , электронное , мюонное , тяжелый-лептон и соответствующее . (символ е) считается материальным наименьшей массы в природе m с, равной 9,1 x 10 -28 г (в энергетич. единицах 0,511 МэВ) и наименьшего отрицат. электрич. заряда е = 1,6 x 10 -19 Кл. (символ) - частицы с массой ок. 207 масс (105,7 МэВ) и электрич. зарядом, равным заряду ; тяжелый-лептон имеет массу ок. 1,8 ГэВ. Соответствующие этим частицам три типа - электронное (символ v c), мюонное (символ) и-нейтрино (символ) - легкие (возможно, безмассовые) электрически нейтральные частицы.
Все лептоны имеют ( - ), т. е. по статистич. св-вам являются фермионами (см. ).
Каждому из лептонов соответствует , имеющая те же значения массы, и др. характеристик, но отличающаяся знаком электрич. заряда. Существуют (символ е +) - по отношению к , положительно заряженный (символ) и три типа антинейтрино (символ), к-рым приписывают противоположный знак особого квантового числа, наз. лептонным зарядом (см. ниже).
Третья группа элементарных частиц,- адроны, они участвуют в сильном, слабом и электромагнитном взаимодействиях. Адроны представляют собой "тяжелые" частицы с массой, значительно превышающей массу . Это наиб. многочисленная группа элементарных частиц. Адроны делятся на барионы - частицы со мезоны - частицы с целочисленным (О или 1); а также т. наз. резонансы - короткоживущие адронов. К барионам относят (символ р) - ядро с массой, в ~ 1836 раз превышающей m с и равной 1,672648 x 10 -24 г (938,3 МэВ), и положит. электрич. зарядом, равным заряду , а также (символ n) - электрически нейтральная частица, масса к-рой немного превышает массу . Из и построены все , именно сильное взаимод. обусловливает связь этих частиц между собой. В сильном взаимодействии и имеют одинаковые св-ва и рассматриваются как два одной частицы - нуклона с изотопич. (см. ниже). Барионы включают и гипероны - элементарные частицы с массой больше нуклонной:-гиперон имеет массу 1116 МэВ,-гиперон- 1190 МэВ,-гиперон -1320 МэВ,-гиперон- 1670 МэВ. Мезоны имеют массы, промежуточные между массами и (-мезон, K-мезон). Существуют мезоны нейтральные и заряженные (с положит. и отрицат. элементарным электрич. зарядом). Все мезоны по своим сгатистич. св-вам относятся к бозонам.

Основные свойства элементарных частиц. Каждая элементарная частица описывается набором дискретных значений физ. величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, электрич. заряд.
В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными (в пределах точности совр. измерений) являются: (время жизни более 5 -10 21 лет), (более 10 31 лет), фотон и . К квазистабильным относятся частицы, распадающиеся вследствие электромагнитного и слабого взаимод., их времена жизни более 10 -20 с. Резонансы распадаются за счет сильного взаимод., их характерные времена жизни 10 -22 -10 -24 с.
Внутренними характеристиками (квантовыми числами) элементарных частиц являются лептонный (символ L) и барионный (символ В)заряды; эти числа считаются строго сохраняющимися величинами для всех типов фундам. взаимод. Для лептонных и их L имеют противоположные знаки; для барионов В = 1, для соответствующих В = -1.
Для адронов характерно наличие особых квантовых чисел: "странности", "очарования", "красоты". Обычные (нестранные) адроны - ,-мезоны. Внутри разных групп адронов имеются семейства частиц, близких по массе и со сходными св-вами по отношению к сильному взаимод., но с разл. значениями электрич. заряда; простейший пример -протон и . Общее квантовое число для таких элементарных частиц - т. наз. изотопич. , принимающий, как и обычный , целые и полуцелые значения. К особым характеристикам адронов относится и внутренняя четность, принимающая значения1.
Важное св-во элементарных частиц - их способность к взаимопревращениям в результате электромагнитных или др. взаимодействий. Один из видов взаимопревращений - т. наз. рождение , или образование одновременно частицы и (в общем случае - образование элементарных частиц с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных е - е + , мюонных новых тяжелых частиц при столкновениях лептонов, образование из кварков cc- и bb-состояний (см. ниже). Другой вид взаимопревращений элементарных частиц - аннигиляция при столкновениях частиц с образованием конечного числа фотонов (квантов). Обычно образуются 2 фотона при нулевом суммарном сталкивающихся частиц и 3 фотона - при суммарном , равном 1 (проявление закона сохранения зарядовой четности).
При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - е - е + и Эти нестабильные системы, часто наз. , их время жизни в в-ве в большой степени зависит от св-в в-ва, что позволяет использовать для изучения структуры конденсир. в-ва и кинетики быстрых хим. р-ций (см. , ).

Кварковая модель адронов. Детальное рассмотрение квантовых чисел адронов с целью их позволило сделать вывод о том, что странные адроны и обычные адроны в совокупности образуют объединения частиц с близкими св-вами, названные унитарными мультиплетами. Числа входящих в них частиц равны 8 (октет) и 10 (декуплет). Частицы, входящие в состав унитарного мультиплета, имеют одинаковые и внутр. четность, но различаются значениями электрич. заряда (частицы изотопич. мультиплета) и странности. С унитарными группами связаны св-ва , их обнаружение явилось основой для вывода о существовании особых структурных единиц, из к-рых построены адроны,-кварков. Считают, что адроны представляют собой комбинации 3 фундам. частиц со 1 / 2: и-кварков, d-кварков и s-кварков. Так, мезоны составлены из кварка и антикварка, барионы - из 3 кварков.
Допущение, что адроны составлены из 3 кварков, было сделано в 1964 (Дж. Цвейг и независимо от него М. Гелл-Ман). В дальнейшем в модель строения адронов (в частности, для того чтобы не возникало противоречия с ) были включены еще 2 кварка - "очарованный" (с) и "красивый" (b), а также введены особые характеристики кварков - "аромат" и "цвет". Кварки, выступающие как составные части адронов, в свободном состоянии не наблюдались. Все многообразие адронов обусловлено разл. сочетаниями и-, d-, s-, с- и b-кварков, образующих связные состояния. Обычным адронам ( ,-мезонам) соответствуют связные состояния, построенные из и- и d-кварков. Наличие в адроне наряду с и- и d-кварками одного s-, с- или b-кварка означает, что соответствующий адрон - "странный", "очарованный" или "красивый".
Кварковая модель строения адронов подтвердилась в результате экспериментов, проведенных в кон. 60-х - нач.
70-х гг. 20 в. Кварки фактически стали рассматриваться как новые элементарные частицы- истинно элементарные частицы для адронной формы материи. Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный характер и дает предполагать, что они являются теми элементарными частицами, к-рые замыкают цепь структурных составляющих в-ва. Существуют теоретич. и эксперим. доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т. е. для отделения кварков друг от друга требуется бесконечно большая энергия или, иначе говоря, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц в-ва. Возможно, что кварки выступают как последняя ступень материи.

Краткие исторические сведения. Первой открытой элементарной частицей был - отрицат. электрич. заряда в обоих знаков электрич. заряда (К. Андерсон и С. Неддермейер, 1936), и К-мезоны (группа С. Пауэлла, 1947; существование подобных частиц было предположено X. Юкавой в 1935). В кон. 40-х - нач. 50-х гг. были обнаружены "странные" частицы. Первые частицы этой группы - К + - и К - -мезоны, Л-гипероны - были зафиксированы также в космич. лучах.
С нач. 50-х гг. ускорители превратились в осн. инструмент исследования элементарных частиц. Были открыты антипротон (1955), антинейтрон (1956), анти--гиперон (1960), а в 1964 - самый тяжелый W -гиперон. В 1960-х гг. на ускорителях обнаружили большое число крайне неустойчивых резонансов. В 1962 выяснилось, что существуют два разных : электронное и мюонное. В 1974 обнаружены массивные (в 3-4 протонные массы) и в то же время относительно устойчивые (по сравнению с обычными резонансами) частицы, к-рые оказались тесно связанными с новым семейством элементарных частиц - "очарованных", их первые представители открыты в 1976. В 1975 обнаружен тяжелый аналог и --лептон, в 1977 - частицы с массой порядка десяти протонных масс, в 1981 - "красивые" частицы. В 1983 открыты самые тяжелые из известных элементарных частиц - бозоны (масса80 ГэВ) и Z° (91 ГэВ).
Т. обр., за годы, прошедшие после открытия , выявлено огромное число разнообразных микрочастиц. Мир элементарных частиц оказался сложно устроенным, а их св-ва во многих отношениях неожиданными.

Лит.: Коккедэ Я., Теория кварков, [пер. с англ.], М., 1971; Марков М. А., О природе материи, М., 1976; Окунь Л.Б., Лептоны и кварки, 2 изд., М., 1990.


Элементарные частицы , в узком смысле - частицы, которые нельзя считать состоящими из других частиц. В современной физике термин "элементарные частицы " используют в более широком смысле: так называют мельчайшие частицы материи, подчиненные условию, что они не являются и атомами (исключение составляет протон); иногда по этой причине элементарные частицы называют субъядерными частицами. Большая часть таких частиц (а их известно более 350) являются составными системами.

Элементарные частицы участвуют в электромагнитном, слабом, сильном и гравитационном взаимодействиях. Из-за малых масс элементарных частиц их гравитационное взаимодействие обычно не учитывается. Все элементарные частицы разделяют на три основные группы. Первую составляют так называемые бозоны - переносчики электрослабого взаимодействия. Сюда относится фотон, или квант электромагнитного излучения. Масса покоя фотона равна нулю, поэтому скорость распространения электромагнитных волн в (в т. ч. световых волн) представляет собой предельную скорость распространения физического воздействия и является одной из фундаментальных физических постоянных; принято, что с = (299792458±1,2) м/с.

Вторая группа элементарных частиц - лептоны, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов: , электронное нейтрино, мюон, мюонное нейтрино, тяжелый τ-лептон и соответствующее нейтрино. Электрон (символ e) считается материальным носителем наименьшей массы в природе m e , равной 9,1×10 -28 г (в энергетических единицах ≈0,511 МэВ) и наименьшего отрицательного электрического заряда e = 1,6×10 -19 Кл. Мюоны (символ μ -) - частицы с массой около 207 масс электрона (105,7 МэВ) и электрическим зарядом, равным заряду электрона; тяжелый τ-лептон имеет массу около 1,8 ГэВ. Соответствующие этим частицам три типа нейтрино - электронное (символ ν e), мюонное (символ ν μ) и τ-нейтрино (символ ν τ) - легкие (возможно, безмассовые) электрически нейтральные частицы.

Каждому из лептонов соответствует , имеющая те же значения массы, спина и других характеристик, но отличающаяся знаком электрического заряда. Существуют (символ e +) - античастица по отношению к , положительно заряженный (символ μ +) и три типа антинейтрино (символы ), которым приписывают противоположный знак особого квантового числа, называемого лептонным зарядом (см. ниже).

Третья группа элементарных частиц - адроны, они участвуют в сильном, слабом и электромагнитном взаимодействиях. Адроны представляют собой "тяжелые" частицы с массой, значительно превышающей массу электрона. Это наиболее многочисленная группа элементарных частиц . Адроны делятся на барионы - частицы со спином ½ћ, мезоны - частицы с целочисленным спином (0 или 1); а также так называемые резонансы - короткоживущие возбужденные состояния адронов. К барионам относят протон (символ p) - ядро атома водорода с массой, в ~ 1836 раз превышающей m e и равной 1,672648×10 -24 г (≈938,3 МэВ), и положительным электрическим зарядом, равным заряду нейтрон (символ n) - электрически нейтральная частица, масса которой немного превышает массу протона. Из протонов и нейтронов построены все , именно сильное взаимодействие обусловливает связь этих частиц между собой. В сильном взаимодействии протон и нейтрон имеют одинаковые свойства и рассматриваются как два квантовых состояния одной частицы - нуклона с изотопическим спином ½ћ (см. ниже). Барионы включают и гипероны - элементарные частицы с массой больше нуклонной: Λ-гиперон имеет массу 1116 МэВ, Σ-гиперон - 1190 МэВ, Θ-гиперон - 1320 МэВ, Ω-гиперон - 1670 МэВ. Мезоны имеют массы, промежуточные между массами протона и электрона (π-мезон, K -мезон). Существуют мезоны нейтральные и заряженные (с положительным и отрицательным элементарным электрическим зарядом). Все мезоны по своим статистическим свойствам относятся к бозонам.

Основные свойства элементарных частиц

Каждая элементарная частица описывается набором дискретных значений физических величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, спин, электрический заряд.

В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными (в пределах точности современных измерений) являются: электрон (время жизни более 5×10 21 лет), протон (более 10 31 лет), фотон и нейтрино. К квазистабильным относятся частицы, распадающиеся вследствие электромагнитного и слабого взаимодействий, их времена жизни более 10 -20 с. Резонансы распадаются за счет сильного взаимодействия, их характерные времена жизни 10 -22 - 10 -24 с.

Внутренними характеристиками (квантовыми числами) элементарных частиц являются лептонный (символ L ) и барионный (символ В )заряды; эти числа считаются строго сохраняющимися величинами для всех типов фундаментальных взаимодействий. Для лептонных и их античастиц L имеют противоположные знаки; для барионов В = 1, для соответствующих античастиц В =-1.

Для адронов характерно наличие особых квантовых чисел: "странности", "очарования", "красоты". Обычные (нестранные) адроны - протон, нейтрон, π-мезоны. Внутри разных групп адронов имеются семейства частиц, близких по массе и со сходными свойствами по отношению к сильному взаимодействию, но с различными значениями электрического заряда; простейший пример - протон и нейтрон. Общее квантовое число для таких элементарных частиц - так называемый изотопический спин, принимающий, как и обычный спин, целые и полуцелые значения. К особым характеристикам адронов относится и внутренняя четность, принимающая значения ±1.

Важное свойство элементарных частиц - их способность к взаимопревращениям в результате электромагнитных или других взаимодействий. Один из видов взаимопревращений - так называемое рождение пары, или образование одновременно частицы и античастицы (в общем случае - образование пары элементарныех частиц с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных пар e - e + , мюонных пар μ + μ - новых тяжелых частиц при столкновениях лептонов, образование из кварков cc - и bb -состояний (см. ниже). Другой вид взаимопревращений элементарных частиц - аннигиляция пары при столкновениях частиц с образованием конечного числа фотонов (γ-квантов). Обычно образуются 2 фотона при нулевом суммарном спине сталкивающихся частиц и 3 фотона - при суммарном спине, равном 1 (проявление закона сохранения зарядовой четности).

При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - позитрония e - e + и мюония μ + e - . Эти нестабильные системы, часто называемые водородоподобными . Их время жизни в веществе в большой степени зависит от свойств вещества, что позволяет использовать водородоподобные атомы для изучения структуры конденсированного вещества и кинетики быстрых химических реакций (см. Мезонная химия , Ядерная химия).

Кварковая модель адронов

Детальное рассмотрение квантовых чисел адронов с целью их классификации позволило сделать вывод о том, что странные адроны и обычные адроны в совокупности образуют объединения частиц с близкими свойствами, названные унитарными мультиплетами. Числа входящих в них частиц равны 8 (октет) и 10 (декуплет). Частицы, входящие в состав унитарного мультиплета, имеют одинаковые и внутреннюю четность, но различаются значениями электрического заряда (частицы изотопического мультиплета) и странности. С унитарными группами связаны свойства симметрии, их обнаружение явилось основой для вывода о существовании особых структурных единиц, из которых построены адроны, - кварков. Считают, что адроны представляют собой комбинации 3 фундаментальных частиц со спином ½: n -кварков, d -кварков и s -кварков. Так, мезоны составлены из кварка и антикварка, барионы - из 3 кварков.

Допущение, что адроны составлены из 3 кварков, было сделано в 1964 (Дж.Цвейг и независимо от него М.Гелл-Ман). В дальнейшем в модель строения адронов (в частности, для того чтобы не возникало противоречия с принципом Паули) были включены еще 2 кварка - "очарованный" (с ) и "красивый" (b ), а также введены особые характеристики кварков - "аромат" и "цвет". Кварки, выступающие как составные части адронов, в свободном состоянии не наблюдались. Все многообразие адронов обусловлено различными сочетаниями n -, d -, s -, с - и b -кварков, образующих связные состояния. Обычным адронам (протону, нейтрону, π-мезонам) соответствуют связные состояния, построенные из n - и d -кварков. Наличие в адроне наряду с n - и d -кварками одного s- , с - или b -кварка означает, что соответствующий адрон - "странный", "очарованный" или "красивый".

Кварковая модель строения адронов подтвердилась в результате экспериментов, проведенных в конце 60-х - начале 70-х гг. XX в. Кварки фактически стали рассматриваться как новые элементарные частицы - истинно элементарные частицы для адронной формы материи. Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный характер и дает основания предполагать, что они являются теми элементарными частицами , которые замыкают цепь структурных составляющих вещества. Существуют теоретические и экспериментальные доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т.е. для отделения кварков друг от друга требуется бесконечно большая энергия или, иначе говоря, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц вещества. Возможно, что кварки выступают как последняя ступень дробления материи.

Краткие исторические сведения

Первой открытой элементарной частицей был электрон - носитель отрицательного электрического заряда в атомах (Дж.Дж.Томсон, 1897). В 1919 Э.Резерфорд обнаружил среди частиц, выбитых из атомных ядер, протоны. Нейтроны открыты в 1932 Дж.Чедвиком. В 1905 А.Эйнштейн постулировал, что электромагнитное излучение является потоком отдельных квантов (фотонов) и на этой основе объяснил закономерности фотоэффекта. Существование как особой элементарной частицы впервые предложил В.Паули (1930); электронное

Элементарными называют частицы, у которых на данный момент не обнаружено внутренней структуры. Еще в прошлом веке элементар­ными частицами считались атомы. Их внут­ренняя структура - ядра и электроны - была обнаружена в начале XXв. в опытах Э. Резерфорда. Размер атомов - около 10 -8 см, ядер - в десятки тысяч раз меньше, а размер электронов совсем мал. Он меньше чем 10 -16 см, как это следует из современных тео­рий и экспериментов.

Таким образом, сейчас электрон - элемен­тарная частица. Что касается ядер, то их внутренняя структура обнаружилась вскоре после их открытия. Они состоят из нукло­нов - протонов и нейтронов. Ядра довольно плотные: среднее расстояние между нуклонами всего в несколько раз больше их собственного размера. Для того чтобы выяснить, из чего состоят нуклоны, понадобилось около полуве­ка, правда, при этом заодно появились и были разрешены и другие загадки природы.

Нуклоны состоят из трех кварков, которые элементарны с той же точностью, что и элек­трон, т. е. их радиус меньше 10 -16 см. Радиус нуклонов - размер области, занимаемой квар­ками, - около 10 -13 см. Нуклоны принадлежат к большому семейству частиц - барионов, составленных из трех различных (или одина­ковых) кварков. Кварки могут по-разному связываться в тройки, и это определяет раз­личия в свойствах бариона, например, он может иметь различный спин.

Кроме того, кварки могут соединяться в пары - мезоны, состоящие из кварка и антикварка. Спин мезонов принимает целые значения, в то время как для барионов он при­нимает полуцелые значения. Вместе барионы и мезоны называются адронами.

В свободном виде кварки не найдены, и сог­ласно принятым в настоящее время представ­лениям они могут существовать только в виде адронов. До открытия кварков некоторое время адроны считались элементарными частицами (и такое их название еще довольно часто встре­чается в литературе).

Первым экспериментальным указанием на составную структуру адронов были опыты по рассеянию электронов на протонах на линейном ускорителе в Станфорде (США), которые мож­но было объяснить, лишь предположив наличие внутри протона каких-то точечных объектов.

Вскоре стало ясно, что это - кварки, существо­вание которых предполагалось еще ранее тео­ретиками.

Здесь представлена таблица современных элементарных частиц. Кроме шести видов квар­ков (в опытах пока проявляются только пять, но теоретики предполагают, что есть и шестой) в этой таблице приведены лептоны - частицы, к семье которых принадлежит и электрон. Еще в этой семье обнаружены мюон и (совсем не­давно) t-лептон. У каждого из них есть свое нейтрино, так что лептоны ес­тественным образом разбиваются на три пары е, n е; m, n m ;t, n t .

Каждая из этих пар объединяется с соответ­ствующей парой кварков в четверку, которая называется поколением. Свойства частиц повторяются из поколения в поколение, как это видно из таблицы. Отличаются лишь массы. Второе поколение тяжелее первого, а третье по­коление тяжелее второго.

В природе встречаются в основном частицы первого поколения, а остальные создаются искусственно на ускорителях заряженных час­тиц или при взаимодействии космических лучей в атмосфере.

Кроме имеющих спин 1/2 кварков и лептонов, вместе называемых частицами ве­щества, в таблице приведены частицы со спином 1. Это кванты полей, создаваемых час­тицами вещества. Из них наиболее известная частица - фотон, квант электромагнитного поля.

Так называемые промежуточные бозоны W + иW - , обладающие очень большими массами, были недавно обнаружены в экспериментах на встречных р -пучках при энергиях в несколь­ко сотен ГэВ. Это переносчики слабых взаимо­действий между кварками и лептонами. И на­конец, глюоны - переносчики сильных взаимодействий между кварками. Как и сами квар­ки, глюоны не обнаружены в свободном виде, но проявляются на промежуточных стадиях реакций рождения и уничтожения адронов. Недавно были зарегистрированы струи адронов, порожденные глюонами. Поскольку все пред­сказания теории кварков и глюонов - кван­товой хромодинамики - сходятся с опытом, почти нет сомнений в существовании глюонов.

Частица со спином 2 - это гравитон. Его существование вытекает из теории тяготе­ния Эйнштейна, принципов квантовой механики и теории относительности. Обнаружить грави­тон экспериментально будет чрезвычайно трудно, поскольку он очень слабо взаимодействует с веществом.

Наконец, в таблице со знаком вопроса приве­дены частицы со спином 0 (Н-мезоны) и 3/2 (гравитино); они не обнаружены на опы­те, но их существование предполагается во многих современных теоретических моделях.

Элементарные частицы

спин 0? 1/2 1 3/2 2?
название Частицы Хиггса Частицы вещества Кванты полей
кварки лептоны фотон векторные бозоны глюон гравитино гравитон
символ H u d n e e g Z W g
(масса) (?) (?) (0,5) (0) (~95Гэв) (~80Гэв) (?) (?)
символ с s n m m
(масса) (0?) (106)
символ t b n t t
(масса) (0?) (1784)
Барионный заряд 0 1/3 1/3 0 0 0 0 0 0 0 0
Электрический заряд 0, ±1 2/3 1/3 0 -1 0 0 ±1 0 0 0
цвет - 3 3 - - - - - 8 - -

Адроны - общее название для частиц, участ­вующих в сильных взаимодействиях. Название происходит от греческого слова, означающего «сильный, крупный». Все адроны делятся на две большие группы - мезоны и барионы.

Барионы (от греческого слова, означающего «тяжелый») - это адроны с полуце­лым спином . Самые известные барионы - протони нейтрон. К барионам принадлежит также ряд частиц с квантовым числом, названным когда-то странно­стью . Единицей странности обладают барион лямбда (L°) и семейство барионов сигма (S - , S+ и S°). Индексы +, - ,0 указывают на знак электрического заряда или нейтральность частицы. Двумя единицами странности обла­дают барионы кси (X - и X°). Барион W - имеет странность, равную трем. Массы перечисленных барионов примерно в полтора раза больше массы протона, а их характерное время жизни составляет около 10 -10 с. Напомним, что протон практически стабилен, а нейтрон живет более 15 мин. Казалось бы, более тяжелые барионы очень недолговечны, но по масштабам микро­мира это не так. Такая частица, даже двига­ясь относительно медленно, со скоростью, скажем, равной 10% от световой скорости, успевает пройти путь в несколько миллиметров и оста­вить свой след в детекторе элементарных час­тиц. Одним из свойств барионов, отличающих их от других видов частиц, можно считать наличие у них сохраняющегося барионного за­ряда. Эта величина введена для описания опытного факта постоянства во всех извест­ных процессах разности между числом барио­нов и антибарионов.

Протон - стабильная частица из класса адронов, ядро атома водорода. Трудно ска­зать, какое событие следует считать откры­тием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и откры­тие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906-1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона,подтвердив открытие искусственного превра­щения элементов. В этих опытах a-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атом­ный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10 -21 . Масса протона m p = (938,2796 ± 0,0027)МэВ или ~ 1,6-10 -24 г, т. е. протон в 1836 раз тяжелее электрона! С современ­ной точки зрения протон не является истин­но элементарной частицей: он состоит из двух u -кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d -кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами - глюонами, квантами поля, переносящего сильные взаимо­действия. Данные экспериментов, в которых рассматривались процессы рассеяния электро­нов на протонах, действительно свидетельству­ют о наличии внутри протонов точечных рас­сеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечныеразмеры ~ 10 -13 см, хотя, разумеется, его нель­зя представлять как твердый шарик. Скорее, протон напоминает облако с размытой грани­цей, состоящее из рождающихся и аннигили­рующих виртуальных частиц.

Протон, как и все адроны, участвует в каж­дом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимо­действия - протоны и электроны в атомах. Примерами слабых взаимодействий могут слу­жить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и ней­трино (для свободного про­тона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полу­целым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, раз­личные гипероны (L, S, X, W) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число - барионный заряд, равный 1 для барионов, - 1 - для антибарионов и О - для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохране­ния барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сох­ранение барионного заряда делает невозмож­ным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический ха­рактер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабиль­ностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации