Виды вредных выбросов в атмосферу. Выбросы в атмосферу, как источник загрязнения

Проблема экологичности автомобилей возникла ещё в середине ХХ века, когда машины стали массовым продуктом. Европейские страны, находясь на сравнительно небольшой территории, ранее других стали применять различные экологические нормативы. Они существовали в отдельных странах и включали различные требования к содержанию вредных веществ в выхлопных газах у автомобилей.

В 1988 году Европейской экономической комиссией ООН был введён единый регламент (так называемый Евро-0) с требованиями снизить уровень выбросов окиси углерода, оксида азота и других веществ в автомобилях. Раз в несколько лет требования ужесточались, другие государства также стали вводить подобные нормативы.

Экологические нормы в Европе

С 2015 года в Европе действуют нормы Евро-6. Согласно этим требованиям, для бензиновых двигателей устанавливаются следующие допустимые выбросы вредных веществ (г/км):

  • Оксид углерода (CO) — 1
  • Углеводород (СН) — 0,1
  • Оксид азота (NOx) — 0,06

Для автомобилей с дизельными двигателями стандарт Евро-6 устанавливает другие нормы (г/км):

  • Оксид углерода (CO) — 0,5
  • Оксид азота (NOx) — 0,08
  • Углеводороды и оксиды азота (HC+NOx) — 0,17
  • Взвешенные частицы (PM) — 0,005

Экологический стандарт в России

Россия следует стандартам Евросоюза по выбросам выхлопных газов, хотя их реализация отстаёт на 6-10 лет. Первым стандартом, который был официально утверждён в РФ, стал Евро-2 в 2006 году.

С 2014 года в России на ввозимые автомобили действует стандарт Евро-5. С 2016 года он стал применяться и на все производимые автомобили.

Стандарты Евро-5 и Евро-6 имеют одинаковые нормы максимального количества выбросов вредных веществ для автомобилей с бензиновым двигателем. А вот для автомобилей, двигатель которых работает на дизельном топливе, стандарт Евро-5 имеет менее строгие требования: оксид азота (NOx) не должен превышать 0,18 г/км, а углеводороды и оксиды озота (HC+NOx) — 0,23 г/км.

Нормы выбросов в США

Федеральный стандарт к выбросам в атмосферу в США для легковых автомобилей делится на три категории: транспортные средства с низким уровнем выбросов (LEV), транспортные средства со сверхнизким уровнем выбросов (ULEV — гибриды) и транспортные средства с супернизким уровнем выбросов (SULEV — электромобили). На каждый из классов существуют отдельные требования.

В целом все производители и дилеры по продаже автомобилей на территории США придерживаются требований по выбросам в атмосферу агентства ЕРА (LEV II):

Пробег (миль)

Неметановые органические газы (NMOG), г/миль

Оксид азота (NO x), г/миль

Оксид углерода (CO), г/миль

Формальдегид (HCHO), г/миль

Взвешенные частицы (PM)

Стандарты выбросов в Китае

В Китае программы по контролю за выбросами загрязняющих веществ автомобилями начали появляться в восьмидестые годы, а общенациональный стандарт появился лишь в конце девяностых годов. Китай начал применять постепенно строгие стандарты выбросов выхлопных газов для легковых автомобилей в соответствии с европейскими нормами. Эквивалентом Евро-1 стал Китай-1, Евро-2 — Китай-2 и т. д.

Текущий национальный стандарт автомобильных выбросов в Китае — Китай-5. Он устанавливает различные нормы для автомобилей двух типов:

  • Автомобили типа 1: транспортные средства, вмещающие не более 6 пассажиров, включая водителя. Масса ≤ 2,5 тонны.
  • Автомобили типа 2: другие лёгкие транспортные средства (включая лёгкие грузовые автомобили).

Согласно стандарту Китай-5, предельные уровни выбросов загрязняющих веществ для бензиновых двигателей следующие:

Тип автомобиля

Масса, кг

Оксид углерода (CO),

Углеводороды (HC), г/км

Оксид азота (NOx), г/км

Взвешенные частицы (PM)

Автомобили с дизельными двигателями имеют другие предельные нормы выбросов:

Тип автомобиля

Масса, кг

Оксид углерода (CO),

Углеводороды и оксиды озота (НС + NOx), г/км

Оксид азота (NOx), г/км

Взвешенные частицы (PM)

Нормы выбросов в Бразилии

Программа контроля за выбросами моторных транспортных средств в Бразилии называется PROCONVE. Первый стандарт был внедрён в 1988 году. В целом эти нормы соответствуют европейским, однако ныне действующий PROCONVE L6, хотя и является аналогом Евро-5, не включает в себя обязательное наличие фильтров для фильтрации твёрдых частиц или количества выбросов в атмосферу.

Для автомобилей, масса которых не превышает 1700 кг, стандарты выбросов по PROCONVE L6 следующие (г/км):
  • Оксид углерода (CO) — 2
  • Тетрагидроканнабинол (THC) — 0,3
  • Летучие органические вещества (NMHC) — 0,05
  • Оксид азота (NOx) — 0,08
  • Взвешенные частицы (PM) — 0,03

Если масса автомобиля больше 1700 кг, то нормы меняются(г/км):

  • Оксид углерода (CO) — 2
  • Тетрагидроканнабинол (THC) — 0,5
  • Летучие органические вещества (NMHC) — 0,06
  • Оксид азота (NOx) — 0,25
  • Взвешенные частицы (PM) — 0,03.

Где более строгие нормы?

В целом развитые страны ориентируются на сходные нормы по содержанию вредных веществ в выхлопных газах. Евросоюз в этом плане является своеобразным авторитетом: он наиболее часто обновляет эти показатели и внедряет жёсткое правовое регулирование. Другие страны следуют за такой тенденцией и также обновляют нормы выбросов. Например, китайская программа полностью эквивалентна Евро: нынешний Китай-5 соответствует Евро-5. Россия также пытается не отставать от Евросоюза, но на данный момент реализуется стандарт, который действовал в европейских странах до 2015 года.

Промышленно-экономическое развитие сопровождается, как правило, ростом загрязнения окружающей среды. Большинство крупных городов характеризуются значительной концентрацией промышленных объектов на относительно незначительных территориях, что представляет опасность для здоровья людей.

Одним из экологических факторов, оказывающих наиболее выраженное влияние на здоровье человека, является качество воздуха. Особую опасность в настоящее время представляют выбросы в атмосферу загрязняющих веществ. Это обусловлено тем, что токсиканты поступают в человеческий организм в основном через дыхательные пути.

Выбросы в атмосферу: источники

Различают природные и антропогенные источники поступления загрязнителей в воздух. Основными примесями, которые содержат выбросы в атмосферу от естественных источников, являются пыль космического, вулканического и растительного происхождения, газы и дым, образующиеся в результате лесных и степных пожаров, продукты разрушения и выветривания горных пород и почв и пр.

Уровни загрязнения воздушной среды природными источниками носят фоновый характер. Они достаточно мало изменяются со временем. Основными источниками поступления в воздушный бассейн загрязняющих веществ на современном этапе являются антропогенные, а именно − промышленность (различные отрасли), сельское хозяйство и автотранспорт.

Выбросы предприятий в атмосферу

Самыми крупными «поставщиками» различных загрязнителей в воздушный бассейн являются металлургические и энергетические предприятия, химическое производство, стройиндустрия, машиностроение.

В процессе сжигания топлива различных видов энергетическими комплексами в атмосферу выделяются большие количества сернистого ангидрида, оксидов углерода и азота, сажи. Также в выбросах (в меньших количествах) присутствует ряд других веществ, в частности углеводороды.

Основные источники пылегазовых выбросов в металлургическом производстве - плавильные печи, разливочные установки, травильные отделения, агломерационные машины, дробильноразмольное оборудование, разгрузка-погрузка материалов и пр. Наибольшую долю среди общего количества веществ, поступающих в атмосферу, занимают окись углерода, пыль, ангидрид сернистый, оксид азота. В несколько меньших количествах выбрасываются марганец, мышьяк, свинец, фосфор, пары ртути и пр. Также в процессе сталеплавильного производства выбросы в атмосферу содержат парогазовые смеси. В их состав входит фенол, бензол, формальдегид, аммиак и ряд других опасных веществ.

Вредные выбросы в атмосферу от предприятий химической отрасли, несмотря на небольшие объемы, представляют особую опасность для природной среды и человека, поскольку характеризуются высокой токсичностью, концентрированностью и значительным разнообразием. Поступающие в воздух смеси в зависимости от вида выпускаемой продукции могут иметь в своем составе летучие органические соединения, соединения фтора, нитрозные газы, твердые вещества, хлористые соединения, сероводород и пр.

При производстве стройматериалов и цемента выбросы в атмосферу содержат значительные количества различной пыли. Основными технологическими процессами, приводящими к их образованию, являются измельчение, обрабатывание шихт, полуфабрикатов и продуктов в потоках горячих газов и пр. Вокруг заводов, производящих различные стройматериалы, могут образовываться зоны загрязнения радиусом до 2000 м. Они характеризуются высокой концентрацией в воздухе пыли, содержащей частицы гипса, цемента, кварца, а также ряда других загрязняющих веществ.

Выбросы автотранспорта

В крупных городах огромное количество загрязнителей в атмосферу поступает от автотранспортных средств. По разным оценкам, на их долю приходится от 80 до 95%. состоят из большого количества токсичных соединений, в частности оксидов азота и углерода, альдегидов, углеводородов и пр. (всего около 200 соединений).

Наибольшие объемы выбросов отмечаются в зонах расположения светофоров и перекрестков, где автомобили передвигаются на малой скорости и в режиме холостого хода. Расчет выбросов в атмосферу показывает, что основными составляющими выхлопов в этом случае являются и углеводороды.

При этом следует отметить, что, в отличие от стационарных источников выбросов, работа автотранспорта приводит к загрязнению воздуха на городских улицах на высоте человеческого роста. В результате вредному воздействию загрязнителей подвергаются пешеходы, жители расположенных у дорог домов, а также произрастающая на прилегающих территориях растительность.

Сельское хозяйство

Влияние на человека

Согласно различным источникам, имеется прямая связь между загрязнением воздуха и рядом заболеваний. Так, например, длительность течения респираторных заболеваний у детей, которые живут в относительно загрязненных районах, в 2-2,5 раза больше, нежели у тех, что проживают в других районах.

Кроме того, в городах, характеризующихся неблагоприятной экологической обстановкой, у детей отмечены функциональные отклонения в системе иммунитета и кровообразования, нарушения компенсаторно-адаптационных механизмов к условиям внешней среды. Многими исследованиями выявлена также связь между загрязнением воздуха и смертностью людей.

Основными составляющими выбросов, поступающих в воздух от различных источников, являются взвешенные вещества, оксиды азота, углерода и серы. Выявлено, что зоны с превышением ПДК по NO 2 и CO охватывают до 90% городской территории. Приведенные макрокомпоненты выбросов способны вызвать серьезные заболевания. Накопление этих загрязнений приводит к повреждению слизистых оболочек верхних дыхательных путей, развитию легочных заболеваний. Кроме того, повышенные концентрации SO 2 могут вызвать дистрофические изменения в почках, печени и сердце, а NO 2 - токсикозы, врожденные аномалии, сердечную недостаточность, нервные расстройства и др. Некоторыми исследованиями выявлена взаимосвязь между заболеваемостью раком легких и концентрациями SO 2 и NO 2 в воздухе.


Выводы

Загрязнение окружающей природной среды и, в частности, атмосферы, имеет неблагоприятные последствия для здоровья не только настоящего, но и последующих поколений. Поэтому можно смело утверждать, что разработка мероприятий, направленных на то, чтобы уменьшить выбросы вредных веществ в атмосферу, − одна из самых актуальных на сегодняшний день проблем человечества.

Атмосферный воздух - самая важная природная среда для жизни человека. В этой статье мы расскажем о том, как выбросы веществ в атмосферу влияют на состав и качество воздуха, чем грозит загрязнение атмосферы и как этому противостоять.

Что такое атмосфера

Из школьного курса физики мы знаем, что атмосфера – это газовая оболочка планеты Земля. Атмосфера состоит их двух частей: верхней и нижней. Нижняя часть атмосферы называется тропосферой. Именно в нижней части атмосферы сосредоточена основная масса атмосферного воздуха. Здесь происходят процессы, влияющие на погоду и климат у поверхности земли. Эти процессы изменяют состав и качество воздуха. На земле происходят процессы выброса веществ в атмосферу. В результате этих выбросов в атмосферу поступают твердые частицы: пыль, зола и летучие газообразные химические вещества: оксиды серы, оксиды азота, оксиды углерода, углеводороды.

Классификация процессов выброса веществ

Природные источники выброса веществ

Выброс веществ в атмосферу может происходить в результате природных явлений. Представьте, какое огромное количество вредных газов и пепла выбрасывает в атмосферу проснувшийся вулкан. И все эти вещества разносятся воздушными потоками по всему земному шару. Лесной пожар или пыльная буря также наносят вред окружающей среде и атмосфере. Конечно же, природа долго восстанавливается после таких природных катастроф.

Антропогенные источники выбросов веществ

Основная масса веществ, которые выбрасываются в атмосферу, создается человеком. Человек начал влиять на природу в тот момент, когда научился добывать огонь. Но дым, который появился вместе с огнем, не наносил большого вреда природе. Со временем человечество изобрело машины. Появилось производство и промышленные предприятия, был изобретен автомобиль. Завод или фабрика производили продукцию. Но вместе с продукцией вырабатывались вредные вещества, которые выбрасывались в атмосферу.

В наше время основными источниками выбросов в атмосферу являются промышленные предприятия, котельные, транспорт. Самую большой вред окружающей среде наносят предприятия, выпускающие металл, и предприятия, которые производят химическую продукцию.

Производственные процессы, связанные со сжиганием топлива

Тепловые электростанции, выбрасывающие металлургические и химические предприятия, котельные установки твердого и жидкого топлива сжигают топливо и вместе с дымом в атмосферу выбрасывают сернистый и углекислый газ, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка, оксилы азота. Вредные вещества также присутствуют в выхлопах автомобилей и современных турбореактивных самолетов.

Производственные процессы, не связанные со сжиганием топлива

Такие производственные процессы, как добыча ископаемых в карьерах, взрывные работы, выбросы вентиляционных стволов на шахтах, выбросы атомных реакторов, производство строительных материалов, происходят без сжигания топлива, но в атмосферу выбрасываются вредные вещества в виде пыли и ядовитых газов. Особо опасным считается химическое производство из-за возможности аварийных выбросов в атмосферу оксидов серы, азота, углерода, пыли и сажи, хлорорганических и нитросоединений, техногенных радионуклидов, которые считаются очень токсичными веществами.

Вещества, выбрасываемые в атмосферу, разносятся на большие расстояния. Такие вещества могут смешиваться с воздухом нижних слоев атмосферы и называются первичными химическими соединениями. Если первичные вещества вступают в химические реакции с основными компонентами воздуха - кислородом, азотом и водяным паром, то образуются фотохимические окислители и кислоты, которые называются вторичными загрязняющими веществами. Они могут вызвать появление кислотных дождей, фотохимического смога и образование озона в атмосфере. Именно вторичные загрязнители особенно опасны для человека и окружающей среды.

Как же защитить окружающую среду от загрязнения? Одним из методов решения этой проблемы является очистка веществ, выбрасываемых в атмосферу с помощью специальных химических аппаратов. Это не решит проблему полностью, но позволит минимизировать вред, наносимый природе вредными веществами, которые образуются в результате человеческой деятельности.

Под выбросами понимается кратковременное или за определённое время (сутки, год) поступление в окружающую природную среду. Величина выбросов нормируется. В качестве нормируемых показателей приняты предельно допустимый выброс (ПДВ) и временно согласованный с организациями охраны природы выброс (ВСВ).

Предельно допустимый выброс- это норматив, устанавливаемый для каждого конкретного источника исходя из условия, что приземная концентрация вредных веществ с учетом их рассеивания и органа не превышает нормативов качества воздуха. Кроме нормируемых выбросов существуют аварийные и залповые выбросы. Выбросы характеризуются количеством загрязняющих веществ, их химическим составом, концентрацией, агрегатным состоянием.

Промышленные выбросы подразделяют на организованные и неорганизованные. Так называемые организованные выбросы поступают через специально сооружённые газоходы, воздуховоды и трубы. Неорганизованные выбросы поступают в атмосферу в виде ненаправленных потоков в результате нарушения герметизации, нарушения технологии производства или неисправности оборудования.

По агрегатному состоянию выбросы подразделяют на четыре класса 1-газообразные и парообразные, 2-жидкие, 3-твердые.4смешанные.

Газообразные выбросы –диоксид серы, диоксид углерода, оксид и диоксид азота, сероводород, хлор, аммиак и т д. Жидкие выбросы- кислоты, растворы солей, щелочей, органические соединения, синтетические материалы. Твердые выбросы -органическая и неорганическая пыль, соединения свинца, ртути, других тяжёлых металлов, сажа, смолы и другие вещества.

По величине массы выбросы объединены в шесть групп:

1-ая группа- масса выброса менее 0,01 т /сут

2-ая группа–от 0,01 до 01 т /сут;

3-ья группа–от 0,1 до 1т/сут;

4-ая группа–от 1 до10 т/сут;

5-ая группа–10 до100 т/сут;

6-ая группа–свыше 100т/сут.

Для условного обозначения выбросов по составу принята следующая схема: класс (1 2 3 4) ,группа (1 2 3 4 5 6), подгруппе (1 2 3 4), индекс группы массового выброса (ГОСТ 17 2 1 0.1-76).

Выбросы подлежат периодической инвентаризации, под которой понимается систематизация сведений о распределении источников выбросов по территории объекта, их количество и состав. Целями инвентаризации являются:

Определение видов вредных веществ, поступающих в атмосферу от объектов;

Оценка влияния выбросов на окружающую среду;

Установление ПДВ или ВСВ;

Оценка состояния очистного оборудования и экологичности технологий и производственного оборудования;

Планирование очерёдности воздухоохранных мероприятий.

Инвентаризацию выбросов в атмосферу производят один раз в 5 лет в соответствии с «Инструкцией по инвентаризации выбросов загрязняющих веществ в атмосферу». Источники загрязнения атмосферы определяют исходя из схем производственного процесса предприятия.

Для действующих предприятий контрольные точки принимаются по периметру санитарно-защитной зоны. Правила определения допустимых выбросов вредных веществ предприятиями изложены в ГОСТ 17 2 3 02 78 и в « Инструкции по нормированию выбросов (сбросов) загрязняющих веществ в атмосферу и водные объекты».

Основные параметры, характеризующие выбросы загрязняющих веществ в атмосферу: вид производства, источник выделения вредных веществ (установка, агрегат, устройство), источник выброса, число источников выброса, координата расположения выброса, параметры газо-воздушной смеси на выходе из источника выброса (скорость, объём, температура), характеристика газоочистных устройств, виды и количество вредных веществ и др.

Если значения ПДВ не могут быть достигнуты, то предусматривается поэтапное снижение выбросов вредных веществ до значений, обеспечивающих ПДК. На каждом этапе устанавливаются временно согласованные выбросы (ВСВ)

Все расчеты по ПДВ оформляются в виде специального тома в соответствии с «Рекомендациями по оформлению и содержанию проекта нормативов ПДВ в атмосферу для предприятий». По расчёту ПДВ должно быть получено экспертное заключение отдела экспертизы местного комитета охраны природы.

В зависимости от массы и видового состава выбросов в атмосферу, в соответствии с «Рекомендациями по делению предприятий по категории опасности» определяют категорию опасности предприятия (КОП):

Где Мi – масса I-го вещества в выбросе;

ПДКi – среднесуточное ПДК I-го вещества;

П–количество загрязняющих веществ;

Ai–безмерная величина, позволяющая соотнести степень вредности I-го вещества с вредностью сернистого газа (Значения ai в зависимости от класса опасности следующие: класс 2-1,3; класс 3-1; класс4-0,9,

В зависимости от величины КОП предприятия подразделяют на следующие классы опасности: класс 1>106, класс 2-104-106; класс 3-103-104; класс 4-<103

В зависимости от класса опасности устанавливают периодичность отчётности и контроля вредных веществ на предприятии. Предприятия класса опасности 3 разрабатывают том ПДВ (ВСВ) по сокращённой схеме, а предприятие класса опасности 4 не разрабатывают том ПДВ.

Предприятия обязаны вести первичный учёт видов и количеств загрязняющих веществ, выбрасываемых в атмосферу, в соответствии с «Правилами охраны атмосферного воздуха».В конце года предприятие представляет отчет об охране атмосферного воздуха в соответствии с «Инструкцией о порядке составления отчета об охране атмосферного воздуха».

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПИЩЕВЫХ ПРОИЗВОДСТВ»

О.В. ГУТИНА, МАЛОФЕЕВА Ю.Н.

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ к решению задач по курсу

«ЭКОЛОГИЯ»

для студентов всех специальностей

Москва 2006 г.

1. Контроль качества атмосферного воздуха в зоне промышленных предприятий.

Задание 1. Расчет рассеивания дымовых газов из трубы котельной

2. Технические средства и методы защиты атмосферы.

Задание 2.

3. Контроль над загрязнением окружающей среды. Нормативно-правовые основы охраны природы. Плата за наносимый ущерб окружающей среды.

Задание 3. «Расчет технологических выбросов и плата за загрязнение ОПС на примере хлебозавода»

Литература

Рассеивание в атмосфере выбросов промышленных предприятий

Выбросы – поступление загрязняющих веществ в атмосферу. Качество атмосферного воздуха определяется концентрацией содержащихся в нем загрязняющих веществ, которая не должна превышать санитарно – гигиенический норматив – предельно допустимую концентрацию(ПДК) для каждого загрязняющего вещества. ПДК – максимальная концентрация загрязняющего вещества в атмосферном воздухе, отнесенная к определенному времени осреднения, которая при периодическом воздействии или на протяжении всей жизни человека не оказывает на него вредного влияния, включая отдаленные последствия.

При существующих технологиях получения целевых продуктов и существующих способах очистки выбросов уменьшение концентраций опасных загрязнений в окружающей среде обеспечивают увеличением площади рассеивания, путем выведения выбросов на большую высоту. При этом предполагают, что достигается только такой уровень аэротехногенного загрязнения окружающей среды, при котором еще возможно естественное самоочищение воздуха.

Наибольшая концентрация каждого вредного вещества С м (мг/м 3) в приземном слое атмосферы не должна превышать предельно допустимой концентрации :

Если в состав выброса входят несколько вредных веществ, обладающих однонаправленным действием, т.е. взаимоусиливают друг друга, то должно выполняться неравенство:

(2)

С 1 - С n – фактическая концентрация вредного вещества в атмосферном

воздухе, мг/м 3 ,

ПДК - предельно допустимые концентрации загрязняющих веществ (МР).

Научно обоснованные нормы ПДК в приземном слое атмосферы должны обеспечиваться контролем нормативов для всех источников выбросов. Таким экологическим нормативом является предельно допустимый выброс

ПДВ - максимальный выброс загрязняющего вещества, который, рассеиваясь в атмосфере, создает приземную концентрацию этого вещества не превышающую ПДК с учетом фоновой концентрации.

Загрязнение окружающей среды при рассеивании выбросов предприятий через высокие трубы зависит от многих факторов: высоты трубы, скорости выбрасываемого газового потока, расстояния от источника выброса, наличия нескольких близко расположенных источников выбросов, метеорологических условий и др.

Высота выброса и скорость газового потока. С увеличением высоты трубы и скорости выбрасываемого газового потока эффективность рассеивания загрязнений увеличивается, т.е. рассевание выбросов происходит в большем объеме атмосферного воздуха, над большей площадью поверхности земли.

Скорость ветра. Ветер – турбулентное движение воздуха над поверхностью земли. Направление и скорость ветра не остаются постоянными, скорость ветра возрастает при увеличении перепада атмосферного давления. Наибольшее загрязнение атмосферы возможно при слабых ветрах 0-5 м/с при рассеивании выбросов на малых высотах в приземном слое атмосферы . При выбросах из высоких источников наименьше е рассеивание загрязнений имеет место при скоростях ветра 1-7 м/с (в зависимости от скорости выхода струи газа из устья трубы).

Температурная стратификация . Способность поверхности земли поглощать или излучать тепло влияет на вертикальное распределение температуры в атмосфере. В обычных условиях при подъеме вверх на 1 км температура уменьшается на 6,5 0 : градиент температуры равен 6,5 0 /км . В реальных условиях могут наблюдаться отклонения от равномерного уменьшения температуры с высотой – температурная инверсия . Различают приземные и приподнятые инверсии . Приземные характеризуются появлением более теплого слоя воздуха непосредственно у поверхности земли, приподнятые – появлением более теплого слоя воздуха(инверсионного слоя) на некоторой высоте. В инверсионных условиях ухудшается рассеивание загрязнений, они концентрируются в приземном слое атмосферы. При выбросе загрязненного газового потока из высокого источника наибольшее загрязнение воздуха возможно при приподнятой инверсии, нижняя граница которой находится над источником выброса и наиболее опасной скорости ветра 1 – 7 м/с. Для низких источников выбросов наиболее неблагоприятным является сочетание приземной инверсии со слабым ветром.

Рельеф местности. Даже при наличии сравнительно небольших возвышенностей существенно изменяется микроклимат в отдельных районах и характер рассеивания загрязнений. Так в пониженных местах образуются застойные, плохо проветриваемые зоны с повышенной концентрацией загрязнений. Если на пути загрязненного потока находятся здания, то над зданием скорость воздушного потока увеличивается, сразу за зданием – снижается, постепенно увеличиваясь по мере удаления, и на некотором расстоянии от здания скорость потока воздуха принимает первоначальное значение. Аэродинамическая тень плохо проветриваемая зона, образующаяся при обтекании здания потоком воздуха. В зависимости от типа зданий и характера застройки образуются различные зоны с замкнутой циркуляцией воздуха, что может оказывать существенное влияние на распределение загрязнений.

Методика расчета рассеивания в атмосфере вредных веществ , содержащихся в выбросах, основана на определении концентраций этих веществ (мг/м 3) в приземном слое воздуха. Степень опасности загрязнения приземного слоя атмосферного воздуха выбросами вредных веществ определяется по наибольшему рассчитанному значению концентрации вредных веществ, которое может установиться на некотором расстоянии от источника выброса при наиболее неблагоприятных метеоусловиях (скорость ветра достигает опасного значения, наблюдается интенсивный турбулентный вертикальный обмен и др.).

Расчет рассеивания выбросов проводится по ОНД-86.

Максимальная приземная концентрация определяется по формуле:

(3)

A – коэффициент, зависящий от температурной стратификации атмосферы (значение коэффициента А принимается равным 140 для Центрального района РФ).

М – мощность выброса, масса загрязняющего вещества, выбрасываемого в единицу времени, г/с.

F – безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосфере (для газообразных веществ равен 1, для твердых- 1).

 – безразмерный коэффициент, учитывающий влияние рельефа местности (для равнинной – 1, для пересеченной – 2).

Н – высота источника выброса над уровнем земли, м.

 – разность между температурой, выбрасываемой газовоздушной смесью и температурой окружающего наружного воздуха.

V 1 – расход газовоздушной смеси, выходящей из источника выброса, м 3 /с.

m, n – коэффициенты, учитывающие условия выброса.

Предприятия, выбрасывающие в окружающую среду вредные вещества, должны быть отделены от жилой застройки санитарно-защитными зонами. Расстояние от предприятия до жилой застройки (размеры санитарно-защитной зоны) устанавливаются в зависимости от количества и вида выбрасываемых в окружающую среду загрязняющих веществ, мощности предприятия, особенностей технологического процесса. С 1981г. расчет санитарно-защитной зоны регламентируется государственным стандартам. СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов». По нему все предприятия разделены на 5 классов по степени их опасности. И в зависимости от класса устанавливается нормативная величина СЗЗ.

Предприятие (класс) Размеры санитарно-защитной зоны

I класс 1000 м

II класс 500 м

III класс 300 м

IV класс 100 м

V класс 50

Одна из функций санитарно-защитной зоны – биологическая очистка атмосферного воздуха средствами озеленения. Древесно-кустарниковые насаждения газопоглотительного назначения (фитофильтры ) способны поглощать газообразные загрязняющие вещества. Например, установлено, что луговая и древесная растительность может связывать 16-90% сернистого газа.

Задача №1 : Котельная промышленного предприятия оборудована котлоагрегатом, работающем на жидком топливе. Продукты сгорания: оксид углерода, окислы азота (окись азота и двуокись азота), сернистый ангидрид, мазутная зола, пятиокись ванадия, бензапирен, причем сернистый ангидрид и двуокись азота обладают однонаправленным действием на организм человека и образуют группу суммации.

В задаче требуется:

1) найти максимальную приземную концентрацию сернистого ангидрида и двуокиси азота;

2) расстояние от трубы до места появления С М;

Исходные данные:

    Производительность котельной – Q об =3000 МДж/ч;

    Топливо – сернистый мазут;

    КПД котельной установки –  к.у. =0.8;

    Высота дымовой трубы H=40 м;

    Диаметр дымовой трубы Д=0.4м;

    Температура выброса Т г =200С;

    Температура наружного воздуха Т в =20С;

    Кол-во уходящих газов от 1 кг сжигаемого мазута V г =22.4 м 3 /кг;

    Предельно-допустимая концентрация SO 2 в атмосферном воздухе –

С пдк а.в. =0.05 мг/м 3 ;

    Предельно-допустимая концентрация NO 2 в атмосферном воздухе –

С пдк а.в. =0.04 мг/м 3 ;

    Фоновая концентрация SO 2 – C ф =0.004 мг/м 3 ;

    Теплота сгорания топлива Q н =40.2 МДж/кг;

    Место расположения котельной – Московская область;

    Рельеф местности ­– спокойный (с перепадом высот 50м на 1км).

    Расчет максимальной приземной концентрации выполняется согласно нормативному документу ОНД-86 «Методика расчета концентраций в атмосферном воздухе ЗВ, содержащихся в выбросах предприятий».

С М =
,

 =Т Г – Т В = 200 – 20 = 180 о С.

Для определения расхода газовоздушной смеси найдем часовой расход топлива:

В ч =

V 1 =

m – безразмерный коэффициент, зависящий от условий выброса: скорости выхода газовоздушной смеси, высоты и диаметра источника выброса и разности температур.

f =

скорость выхода газовоздушной смеси из устья трубы определяется по формуле:

 о =

f= 1000

.

n – безразмерный коэффициент, зависящий от условий выброса: объёма газовоздушной смеси, высоты источника выброса и разности температур.

Определяется по характеристической величине

V М = 0,65

n = 0,532V м 2 – 2,13V м + 3,13 = 1,656

М = V 1  а, г/с,

М SO 2 = 0,579  3 =1,737 г/с,

М NO 2 =0,8  0,579 = 0,46 г/с.

Максимальная приземная концентрация:

сернистого ангидрида –

С М =

двуокиси азота -

С м = .

    Находим расстояние от трубы до места появления С М по формуле:

Х М =

где d – безразмерный коэффициент, зависящий от условий выброса: скорости выхода газовоздушной смеси, высоты и диаметра источника выброса, разности температур и объёма газовоздушной смеси.

d = 4,95V м (1 + 0,28f), при 0,5 V М  2,

d = 7 V М (1 + 0,28f), при V М  2.

У нас V М = 0,89  d = 4,95 0,89(1 + 0,280,029) = 4,7

Х М =

    Т.к. приземная концентрация сернистого ангидрида превышает ПДК сернистого ангидрида в атмосферном воздухе, то величину ПДВ сернистого ангидрида для рассматриваемого источника определяем, учитывая необходимость выполнения уравнения суммации

Подставив наши значения, получаем:

что больше 1. Для выполнения условий уравнения суммации необходимо уменьшить массу выброса сернистого ангидрида, сохранив выброс двуокиси азота на прежнем уровне. Рассчитаем приземную концентрацию сернистого ангидрида при котором котельная не будет загрязнять окружающую среду.

=1- = 0,55

С SO2 = 0,55  0,05 = 0,0275 мг/м 3

Эффективность метода очистки, обеспечивающую снижение массы выброса сернистого ангидрида от первоначального значения М = 1,737 г/с до 0,71 г/с определяем по формуле:

%,

где С ВХ – концентрация загрязняющего вещества на входе в газоочистную

установку, мг/м 3 ,

С ВЫХ – концентрация загрязняющего вещества на выходе из газо-

очистной установки, мг/м 3 .

Т.к.
, а
, то

тогда формула приобретет вид:

Следовательно, при выборе метода очистки необходимо, чтобы его эффективность была не ниже 59%.

Технические средства и методы защиты атмосферы.

Выбросы промышленных предприятий характеризуются большим разнообразием дисперсного состава и других физико-химических свойств. В связи с этим разработаны различные методы их очистки и типы газо- и пылеуловителей - аппаратов, предназначенных для очистки выбросов от загрязняющих веществ.

М
етоды очистки промышленных выбросов от пыли можно разделить на две группы: методы улавливания пыли«сухим» способом и методы улавливания пыли«мокрым» способом . Аппараты обеспыливания газов включают: пылеосадительные камеры, циклоны, пористые фильтры, электрофильтры, скрубберы и др.

Наиболее распространенными установками сухого пылеулавливания являются циклоны различных типов.

Они используются для улавливания мучной и табачной пыли, золы, образующейся при сжигании топлива в котлоагрегатов. Газовый поток поступает в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса. Под действием центробежной силы частицы пыли отбрасываются к стенке циклона и под действием силы тяжести опадают в бункер для сбора пыли 4, а очищенный газ выходит через выходную трубу 3. Для нормальной работы циклона необходима его герметичность, если циклон не герметичен, то из-за подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.

Задачи по очистке газов от пыли могут успешно решаться цилиндрическими (ЦН-11, ЦН-15, ЦН-24, ЦП-2) и коническими (СК-ЦН-34, СК-ЦН-34М, СКД-ЦН-33) циклонами, разработанными НИИ по промышленной и санитарной очистке газов (НИИОГАЗ). Для нормального функционирования избыточное давление газов, поступающих в циклоны, не должно превышать 2500 Па. При этом во избежание конденсации паров жидкости t газа выбирается на 30 – 50 о С выше t точки росы, а по условиям прочности конструкции – не выше 400 о С. Производительность циклона зависит от его диаметра, увеличиваясь с ростом последнего. Эффективность очистки циклонов серии ЦН падает с ростом угла входа в циклон. С увеличением размера частиц и уменьшением диаметра циклона эффективность очистки возрастает. Цилиндрические циклоны предназначены для улавливания сухой пыли аспирационных систем и рекомендованы к использованию для предварительной очистки газов на входе фильтров и электрофильтров. Циклоны ЦН-15 изготавливают из углеродистой или низколегированной стали. Канонические циклоны серии СК, предназначенные для очистки газов от сажи, обладают повышенной эффективностью по сравнению с циклонами типа ЦН за счет большего гидравлического сопротивления.

Для очистки больших масс газов применяют батарейные циклоны, состоящие из большего числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами. Отечественная промышленность выпускает батарейные циклоны типа БЦ-2, БЦР-150у и др.

Ротационные пылеуловители относятся к аппаратам центробежного действия, которые одновременно с перемещением воздуха очищают его от фракции пыли крупнее 5 мкм. Они обладают большой компактностью, т.к. вентилятор и пылеуловитель обычно совмещены в одном агрегате. В результате этого при монтаже и эксплуатации таких машин не требуется дополнительных площадей, необходимых для размещения специальных пылеулавливающих устройств при перемещении запыленного потока обыкновенным вентилятором.

Конструктивная схема простейшего пылеуловителя ротационного типа представлена на рисунке. При работе вентиляторного колеса 1 частицы пыли за счет центробежных сил отбрасываются к стенке спиралеобразного кожуха 2 и движутся по ней в направлении выхлопного отверстия 3. Газ, обогащенный пылью, через специальное пылеприемное отверстие 3 отводится в пылевой бункер, а очищенный газ поступает в выхлопную трубу 4.

Для повышения эффективности пылеуловителей такой конструкции необходимо увеличить переносную скорость очищаемого потока в спиральном кожухе, но это ведет к резкому повышению гидравлического сопротивления аппарата, или уменьшить радиус кривизны спирали кожуха, но это снижает его производительность. Такие машины обеспечивают достаточно высокую эффективность очистки воздуха при улавливании сравнительно крупных частиц пыли – свыше 20 – 40 мкм.

Более перспективными пылеотделителями ротационного типа, предназначенными для очистки воздуха от частиц размером  5 мкм, являются противопоточные ротационные пылеотделители (ПРП). Пылеотделитель состоит из встроенного в кожух 1 полого ротора 2 с перфорированной поверхностью и колеса вентилятора 3. Ротор и колесо вентилятора насажены на общий вал. При работе пылеотделителя запыленный воздух поступает внутрь кожуха, где закручивается вокруг ротора. В результате вращения пылевого потока возникают центробежные силы, под действием которых взвешенные частицы пыли стремятся выделиться из него в радиальном направлении. Однако на эти частицы в противоположном направлении действуют силы аэродинамического сопротивления. Частицы, центробежная сила которых больше силы аэродинамического сопротивления, отбрасываются к стенкам кожуха и поступают в бункер 4. Очищенный воздух через перфорацию ротора с помощью вентилятора выбрасывается наружу.

Эффективность очистки ПРП зависит от выбранного соотношения центробежной и аэродинамической сил и теоретически может достигать 1.

Сравнение ПРП с циклонами свидетельствует о преимуществах ротационных пылеуловителей. Так, габаритные размеры циклона в 3 – 4 раза, а удельные энергозатраты на очистку 1000 м 3 газа на 20 – 40 % больше, чем у ПРП при прочих равных условиях. Однако широкое распространение пылеуловители ротационного действия не получили из-за относительной сложности конструкции и процесса эксплуатации по сравнению с другими аппаратами сухой очистки газов от механических загрязнений.

Для разделения газового потока на очищенный газ и обогащенный пылью газ используют жалюзийный пылеотделитель. На жалюзийной решетке 1 газовый поток расходом Q разделяется на два протока расходом Q 1 и Q 2 . Обычно Q 1 = (0.8-0.9)Q, а Q 2 =(0.1-0.2)Q. Отделение частиц пыли от основного газового потока на жалюзийной решетке происходит под действием инерционных сил, возникающих при повороте газового потока на входе в жалюзийную решетку, а также за счет эффекта отражении частиц от поверхности решетки при соударении. Обогащенный пылью газовый поток после жалюзийной решетки направляется к циклону, где очищается от частиц, и вновь вводится в трубопровод за жалюзийной решеткой. Жалюзийные пылеотделители отличаются простотой конструкции и хорошо компонуются в газоходах, обеспечивая эффективность очистки 0,8 и более для частиц размером более 20 мкм. Они применяются для очистки дымовых газов от крупнодисперсной пыли при t до 450 – 600 о С.

Электрофильтр. Электрическая очистка один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Осадительные электроды 2 присоединяют к положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды подсоединяют к отрицательному полюсу. Частицы, поступающие в электрофильтр, ок положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды приедаче заряда ионов примесей ана. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 бычно уже имеют небольшой заряд, полученный за счет трения о стенки трубопроводов и оборудования. Таким образом, отрицательно заряженные частицы движутся к осадительному электроду, а положительно заряженные частицы оседают на отрицательном коронирующем электроде.

Фильтры широко используют для тонкой очистки газовых выбросов от примесей. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них. Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтро-

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации