При изгибе в поперечных сечениях балки действуют. Чистый изгиб

Чистым изгибом называется такой вид изгиба, при котором имеет место действие только изгибающего момента (рис. 3.5, а). Мысленно проведем плоскость сечения I-I перпендикулярно продольной оси балки на расстоянии * от свободного конца балки, к которому приложен внешний момент m z . Осуществим действия, аналогичные тем, которые были выполнены нами при определении напряжений и деформаций при кручении, а именно:

  • 1) составим уравнения равновесия мысленно отсеченной части детали;
  • 2) определим деформацию материала детали исходя из условий совместности деформаций элементарных объемов данного сечения;
  • 3) решим уравнения равновесия и совместности деформаций.

Из условия равновесия отсеченного участка балки (рис. 3.5, б)

получим, что момент внутренних сил M z равен моменту внешних сил т: М = т.

Рис. 3.5.

Момент внутренних сил создается нормальными напряжениями o v , направленными вдоль оси х. При чистом изгибе нет внешних сил, поэтому сумма проекций внутренних сил на любую координатную ось равна нулю. На этом основании запишем условия равновесия в виде равенств

где А - площадь поперечного сечения балки (стержня).

При чистом изгибе внешние силы F x , F, F v а также моменты внешних сил т х, т у равны нулю. Поэтому остальные уравнения равновесия тождественно равны нулю.

Из условия равновесия при о^О следует, что

нормальные напряжение с х в поперечном сечении принимают как положительные, так и отрицательные значения. (Опыт показывает, что при изгибе материал нижней стороны бруса на рис. 3.5, а растянут, а верхней - сжат.) Следовательно, в поперечном сечении при изгибе есть такие элементарные объемы (переходного слоя от сжатия к растяжению), в которых удлинение или сжатие отсутствует. Это - нейтральный слой. Линия пересечения нейтрального слоя с плоскостью поперечного сечения называется нейтральной линией.

Условия совместности деформаций элементарных объемов при изгибе формируется на основе гипотезы плоских сечений: плоские до изгиба поперечные сечения балки (см. рис. 3.5, б) останутся плоскими и после изгиба (рис. 3.6).

В результате действия внешнего момента брус изгибается, а плоскости сечений I-I и II-II поворачиваются друг относительно друга на угол dy (рис. 3.6, б). При чистом изгибе деформация всех сечений вдоль оси балки одинакова, поэтому радиус р к кривизны нейтрального слоя балки вдоль оси х один и тот же. Так как dx = р K dip, то кривизна нейтрального слоя равна 1 / р к = dip / dx и постоянна по длине балки.

Нейтральный слой не деформируется, его длина до и после деформации равна dx. Ниже этого слоя материал растянут, выше - сжат.


Рис. 3.6.

Значение удлинения растянутого слоя, находящегося на расстоянии у от нейтрального, равно ydq. Относительное удлинение этого слоя:

Таким образом, в принятой модели получено линейное распределение деформаций в зависимости от расстояния данного элементарного объема до нейтрального слоя, т.е. по высоте сечения балки. Полагая, что нет взаимного надавливания параллельных слоев материала друг на друга (о у = 0, а, = 0), запишем закон Гука для линейного растяжения:

Согласно (3.13) нормальные напряжения в поперечном сечении балки распределены по линейному закону. Напряжение элементарного объема материала, наиболее удаленного от нейтрального слоя (рис. 3.6, в ), максимально и равно

? Задача 3.6

Определить предел упругости стального клинка толщиной / = 4 мм и длиной / = 80 см, если его изгиб в полуокружность не вызывает остаточной деформации.

Решение

Напряжение при изгибе o v = Еу / р к. Примем y max = t / 2и р к = / / к.

Предел упругости должен соответствовать условию с уп > c v = 1 / 2 кЕ t /1.

Ответ: о = ] / 2 к 2 10 11 4 10 _3 / 0,8 = 1570 МПа; предел текучести этой стали а т > 1800 МПа, что превышает а т самых прочных пружинных сталей. ?

? Задача 3 .7

Определить минимальный радиус барабана для намотки ленты толщиной / = 0,1 мм нагревательного элемента из никелевого сплава, при котором материал ленты пластически не деформируется. Модуль Е= 1,6 10 5 МПа, предел упругости о уп = 200 МПа.

Ответ: минимальный радиус р = V 2 ?ir/a yM = У? 1,6-10 11 0,1 10 -3 / (200 10 6) = = 0,04 м. ?

1. При совместном решении первого уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим

Значение Е / р к ф 0 и одинаково для всех элементов dA площади интегрирования. Следовательно, данное равенство удовлетворяется только при условии

Этот интеграл называют статическим моментом площади поперечного сечения относительно оси z? Каков физический смысл этого интеграла?

Возьмем пластинку постоянной толщины /, но произвольного профиля (рис. 3.7). Подвесим эту пластинку в точке С так, чтобы она находилась в горизонтальном положении. Обозначим символом у м удельный вес материала пластинки, тогда вес элементарного объема площадью dA равен dq = уJdA. Так как пластинка находится в состоянии равновесия, то из равенства нулю проекций сил на ось у получим

где G = у M tA - вес пластинки.


Рис. 3.7.

Сумма моментов сил всех сил относительно оси z , проходящей в любом сечении пластинки, также равна нулю:

Учитывая, что Y c = G, запишем

Таким образом, если интеграл вида J xdA по площади А равен

нулю, то х с = 0. Это означает, что точка С совпадает с центром тяжести пластинки. Следовательно, из равенства S z = J ydA = 0 при из-

гибе следует, что центр тяжести поперечного сечения балки находится на нейтральной линии.

Следовательно, значение у с поперечного сечения балки равно нулю.

  • 1. Нейтральная линия при изгибе проходит через центр тяжести поперечного сечения балки.
  • 2. Центр тяжести поперечного сечения является центром приведения моментов внешних и внутренних сил.

Задача 3.8

Задача 3.9

2. При совместном решении второго уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим

Интеграл J z = J y 2 dA называется моментом инерции поперечного

сечения балки (стержня) относительно оси z, проходящей через центр тяжести поперечного сечения.

Таким образом, M z = Е J z / р к. Учитывая, что с х = Ее х = Еу / р к и Е / р к = а х / у, получим зависимость нормальных напряжений о х при изгибе:

1. Напряжение изгиба в данной точке сечения не зависит от модуля нормальной упругости Е, но зависит от геометрического параметра поперечного сечения J z и расстояния у от данной точки до центра тяжести поперечного сечения.

2. Максимальное напряжение при изгибе имеет место в элементарных объемах, наиболее удаленных от нейтральной линии (см. рис. 3.6, в):

где W z - момент сопротивления поперечного сечения относительно оси Z-

Условие прочности при чистом изгибе аналогично условию прочности при линейном растяжении:

где [а м | - допускаемое напряжение при изгибе.

Очевидно, что внутренние объемы материала, особенно вблизи нейтральной оси, практически не нагружены (см. рис. 3.6, в). Это противоречит требованию минимизировать материалоемкость конструкции. Ниже будут показаны некоторые способы преодоления данного противоречия.

Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения при изгибе. Расчет на прочность по нормальным и касательным напряжениям.

10. ПРОСТЫЕ ВИДЫ СОПРОТИВЛЕНИЯ. ПЛОСКИЙ ИЗГИБ

10.1. Общие понятия и определения

Изгиб – это такой вид нагружения, при котором стержень загружен моментами в плоскостях, проходящих через продольную ось стержня.

Стержень, работающий на изгиб, называется балкой (или брусом). В дальнейшем будем рассматривать прямолинейные балки, поперечное сечение которых имеет хотя бы одну ось симметрии.

В сопротивлении материалов различают изгиб плоский, косой и сложный.

Плоский изгиб – изгиб, при котором все усилия, изгибающие балку, лежат в одной из плоскостей симметрии балки (в одной из главных плоскостей).

Главными плоскостями инерции балки называют плоскости, проходящие через главные оси поперечных сечений и геометрическую ось балки (ось x ).

Косой изгиб – изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб – изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

10.2. Определение внутренних усилий при изгибе

Рассмотрим два характерных случая изгиба: в первом – консольная балка изгибается сосредоточенным моментом M o ; во втором – сосредоточенной силой F .

Используя метод мысленных сечений и составляя уравнения равновесия для отсеченных частей балки, определим внутренние усилия в том и другом случае:

Остальные уравнения равновесия, очевидно, тождественно равны нулю.

Таким образом, в общем случае плоского изгиба в сечении балки из шести внутренних усилий возникает два – изгибающий момент М z и поперечная сила Q y (или при изгибе относительно другой главной оси – изгибающий момент М y и поперечная сила Q z ).

При этом, в соответствии с двумя рассмотренными случаями нагружения, плоский изгиб можно подразделить на чистый и поперечный.

Чистый изгиб – плоский изгиб, при котором в сечениях стержня из шести внутренних усилий возникает только одно – изгибающий момент (см. первый случай).

Поперечный изгиб – изгиб, при котором в сечениях стержня кроме внутреннего изгибающего момента возникает и поперечная сила (см. второй случай).

Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.

При определении внутренних усилий будем придерживаться следующего правила знаков:

1) поперечная сила Q y считается положительной, если она стремится повернуть рассматриваемый элемент балки по часовой стрелке;

2) изгибающий момент М z считается положительным, если при изгибе элемента балки верхние волокна элемента оказываются сжатыми, а нижние – растянутыми (правило зонта).

Таким образом, решение задачи по определению внутренних усилий при изгибе будем выстраивать по следующему плану: 1) на первом этапе, рассматривая условия равновесия конструкции в целом, определяем, если это необходимо, неизвестные реакции опор (отметим, что для консольной балки реакции в заделке можно и не находить, если рассматривать балку со свободного конца); 2) на втором этапе выделяем характерные участки балки, принимая за границы участков точки приложения сил, точки изменения формы или размеров балки, точки закрепления балки; 3) на третьем этапе определяем внутренние усилия в сечениях балки, рассматривая условия равновесия элементов балки на каждом из участков.

10.3. Дифференциальные зависимости при изгибе

Установим некоторые взаимосвязи между внутренними усилиями и внешними нагрузками при изгибе, а также характерные особенности эпюр Q и M , знание которых облегчит построение эпюр и позволит контролировать их правильность. Для удобства записи будем обозначать: M ≡ M z , Q ≡ Q y .

Выделим на участке балки с произвольной нагрузкой в месте, где нет сосредоточенных сил и моментов, малый элемент dx . Так как вся балка находится в равновесии, то и элемент dx будет находиться в равновесии под действием приложенных к нему поперечных сил, изгибающих моментов и внешней нагрузки. Поскольку Q и M в общем случае меняются вдоль оси балки, то в сечениях элемента dx будут возникать поперечные силы Q и Q +dQ , а также изгибающие моменты M и M +dM . Из условия равновесия выделенного элемента получим

∑ F y = 0 Q + q dx − (Q + dQ) = 0;

∑ M 0 = 0 M + Q dx + q dx dx 2 − (M + dM ) = 0.

Из второго уравнения, пренебрегая слагаемым q ·dx ·(dx /2) как бесконечно малой величиной второго порядка, найдем

Соотношения (10.1), (10.2) и (10.3) называют дифференциальными зависимостями Д. И. Журавского при изгибе.

Анализ приведенных выше дифференциальных зависимостей при изгибе позволяет установить некоторые особенности (правила) построения эпюр изгибающих моментов и поперечных сил:

а – на участках, где нет распределенной нагрузки q , эпюры Q ограничены прямыми, параллельными базе, а эпюры M – наклонными прямыми;

б – на участках, где к балке приложена распределенная нагрузка q , эпюры Q ограничены наклонными прямыми, а эпюры M – квадратичными параболами. При этом, если эпюру М строим «на растянутом волокне», то выпуклость па-

раболы будет направлена по направлению действия q , а экстремум будет расположен в сечении, где эпюра Q пересекает базовую линию;

в – в сечениях, где к балке прикладывается сосредоточенная сила на эпюре Q будут скачки на величину и в направлении данной силы, а на эпюре М – перегибы, острием направленные в направлении действия этой силы; г – в сечениях, где к балке прикладывается сосредоточенный момент на эпю-

ре Q изменений не будет, а на эпюре М – скачки на величину этого момента; д – на участках, где Q >0, момент М возрастает, а на участках, где Q <0, момент М убывает (см. рисунки а–г).

10.4. Нормальные напряжения при чистом изгибе прямого бруса

Рассмотрим случай чистого плоского изгиба балки и выведем формулу для определения нормальных напряжений для данного случая. Отметим, что в теории упругости можно получить точную зависимость для нормальных напряжений при чистом изгибе, если же решать эту задачу методами сопротивления материалов необходимо ввести некоторые допущения.

Таких гипотез при изгибе три:

а – гипотеза плоских сечений (гипотеза Бернулли)

– сечения плоские до деформации остаются плоскими и после деформации, а лишь поворачиваются относительно некоторой линии, которая называется нейтральной осью сечения балки. При этом волокна балки, лежащие с одной стороны от нейтральной оси будут растягиваться, а с другой – сжиматься; волокна, лежащие на нейтральной оси своей длины не изменяют;

б – гипотеза о постоянстве нормальных напряже-

ний – напряжения, действующие на одинаковом расстоянии y от нейтральной оси, постоянны по ширине бруса;

в – гипотеза об отсутствии боковых давлений – со-

седние продольные волокна не давят друг на друга.

Гипотезу плоских сечений при изгибе можно объяснить на примере: нанесем на боковой поверхности недеформированной балки сетку, состоящую из продольных и поперечных (перпендикулярных к оси) прямых линий. В результате изгиба балки продольные линии примут криволинейное очертание, а поперечные практически останутся прямыми и перпендикулярными к изогнутой оси балки.

Формулировка гипотезы плоских сечения : поперечные сечения, плоские и перпендикулярные к оси балки до , остаются плоскими и перпендикулярными к изогнутой оси после ее деформации.

Это обстоятельство свидетельствует: при выполняется гипотеза плоских сечений , как при и

Помимо гипотезы плоских сечений принимается допущение : продольные волокна балки при ее изгибе не надавливают друг на друга.

Гипотезу плоских сечений и допущение называют гипотезой Бернулли .

Рассмотрим балку прямоугольного поперечного сечения, испытывающую чистый изгиб (). Выделим элемент балки длиной (рис. 7.8. а). В результате изгиба поперечные сечения балки повернутся, образовав угол . Верхние волокна испытывают сжатие, а нижние растяжение. Радиус кривизны нейтрального волокна обозначим .

Условно считаем, что волокна изменяют свою длину, оставаясь при этом прямыми (рис. 7.8. б). Тогда абсолютное и относительное удлинения волокна, отстоящего на расстоянии y от нейтрального волокна:

Покажем, что продольные волокна, не испытывающие при изгибе балки ни растяжения, ни сжатия, проходят через главную центральную ось x.

Поскольку длина балки при изгибе не изменяется, продольное усилие (N), возникающее в поперечном сечении, должно равняться нулю. Элементарное продольное усилие .

С учетом выражения :

Множитель можно вынести за знак интеграла (не зависит от переменной интегрирования).

Выражение представляет поперечного сечения балки относительно нейтральной оси x. Он равен нулю, когда нейтральная ось проходит через центр тяжести поперечного сечения. Следовательно, нейтральная ось (нулевая линия) при изгибе балки проходит через центр тяжести поперечного сечения.

Очевидно: изгибающий момент связан с нормальными напряжениями, возникающими в точках поперечного сечения стержня. Элементарный изгибающий момент, создаваемый элементарной силой :

,

где – осевой момент инерции поперечного сечения относительно нейтральной оси x, а отношение - кривизна оси балки.

Жесткость балки при изгибе (чем больше, тем меньше радиус кривизны ).

Полученная формула представляет собой закон Гука при изгибе для стержня : изгибающий момент, возникающий в поперечном сечении, пропорционален кривизне оси балки.

Выражая из формулы закона Гука для стержня при изгибе радиус кривизны () и подставляя его значение в формулу , получим формулу для нормальных напряжений () в произвольной точке поперечного сечения балки, отстоящей на расстоянии y от нейтральной оси x : .

В формулу для нормальных напряжений () в произвольной точке поперечного сечения балки следует подставлять абсолютные значения изгибающего момента () и расстояния от точки до нейтральной оси (координаты y). Будет ли напряжение в данной точке растягивающим или сжимающим легко установить по характеру деформации балки или по эпюре изгибающих моментов, ординаты которой откладываются со стороны сжатых волокон балки.

Из формулы видно: нормальные напряжения () изменяются по высоте поперечного сечения балки по линейному закону. На рис. 7.8, в показана эпюра . Наибольшие напряжения при изгибе балки возникают в точках, наиболее удаленных от нейтральной оси. Если в поперечном сечении балки провести линию, параллельную нейтральной оси x, то во всех ее точках возникают одинаковые нормальные напряжения.

Несложный анализ эпюры нормальных напряжений показывает, при изгибе балки материал, расположенный вблизи нейтральной оси, практически не работает. Поэтому в целях снижения веса балки рекомендуется выбирать такие формы поперечного сечения, у которых большая часть материала удалена от нейтральной оси, как, например, у двутаврового профиля.

Прямой изгиб – это вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила.

Чистый изгиб – это частный случай прямого изгиба, при котором в поперечных сечениях стержня возникает только изгибающий момент, а поперечная сила равна нулю.

Пример чистого изгиба – участок CD на стержне AB . Изгибающий момент – это величина Pa пары внешних сил, вызывающая изгиб. Из равновесия части стержня слева от поперечного сечения mn следует, что внутренние усилия, распределенные по этому сечению, статически эквивалентны моменту M , равному и противоположно направленному изгибающему моменту Pa .

Чтобы найти распределение этих внутренних усилий по поперечному сечению, необходимо рассмотреть деформацию стержня.

В простейшем случае стержень имеет продольную плоскость симметрии и подвергается действию внешних изгибающих пар сил, находящихся в этой плоскости. Тогда изгиб будет происходить в той же плоскости.

Ось стержня nn 1 – это линия, проходящая через центры тяжести его поперечных сечений.

Пусть поперечное сечение стержня – прямоугольник. Нанесем на его грани две вертикальные линии mm и pp . При изгибе эти линии остаются прямолинейными и поворачиваются так, что остаются перпендикулярными продольным волокнам стержня.

Дальнейшая теория изгиба основана на допущении, что не только линии mm и pp , но все плоское поперечное сечение стержня остается после изгиба плоским и нормальным к продольным волокнам стержня. Следовательно, при изгибе поперечные сечения mm и pp поворачиваются относительно друг друга вокруг осей, перпендикулярных плоскости изгиба (плоскости чертежа). При этом продольные волокна на выпуклой стороне испытывают растяжение, а волокна на вогнутой стороне – сжатие.

Нейтральная поверхность – это поверхность, не испытывающая деформации при изгибе. (Сейчас она расположена перпендикулярно чертежу, деформированная ось стержня nn 1 принадлежит этой поверхности).

Нейтральная ось сечения – это пересечение нейтральной поверхности с любым с любым поперечным сечением (сейчас тоже расположена перпендикулярно чертежу).

Пусть произвольное волокно находится на расстоянии y от нейтральной поверхности. ρ – радиус кривизны изогнутой оси. Точка O – центр кривизны. Проведем линию n 1 s 1 параллельно mm . ss 1 – абсолютное удлинение волокна.

Относительное удлинение ε x волокна

Из этого следует, что деформации продольных волокон пропорциональны расстоянию y от нейтральной поверхности и обратно пропорциональны радиусу кривизны ρ .

Продольное удлинение волокон выпуклой стороны стержня сопровождается боковым сужением , а продольное укорочение вогнутой стороны – боковым расширением , как в случае простого растяжения и сжатия. Из-за этого вид всех поперечных сечений меняется, вертикальные стороны прямоугольника становятся наклонными. Деформация в боковом направлении z :



μ – коэффициент Пуассона.

Вследствие такого искажения все прямые линии поперечного сечения, параллельные оси z , искривляются так, чтоб остаться нормальными к боковым сторонам сечения. Радиус кривизны этой кривой R будет больше, чем ρ в таком же отношении, в каком ε x по абсолютной величине больше чем ε z , и мы получим

Этим деформациям продольных волокон отвечают напряжения

Напряжение в любом волокне пропорционально его расстоянию от нейтральной оси n 1 n 2 . Положение нейтральной оси и радиус кривизны ρ – две неизвестные в уравнении для σ x – можно определить из условия, что усилия, распределенные по любому поперечному сечению, образуют пару сил, которая уравновешивает внешний момент M .

Все вышесказанное также справедливо, если стержень не имеет продольную плоскость симметрии, в которой действует изгибающий момент, лишь бы только изгибающий момент действовал в осевой плоскости, которая заключает в себе одну из двух главных осей поперечного сечения. Эти плоскости называются главными плоскостями изгиба .

Когда имеется плоскость симметрии и изгибающий момент действует в этой плоскости, прогиб происходит именно в ней. Моменты внутренних усилий относительно оси z уравновешивают внешний момент M . Моменты усилий относительно оси y взаимно уничтожаются.

Задача. Построить эпюры Q и M для статически неопределимой балки. Вычислим балки по формуле:

n = ΣR - Ш — 3 = 4 — 0 — 3 = 1

Балка один раз статически неопределима, значит одна из реакций является «лишней» неизвестной . За «лишнюю» неизвестную примем реакцию опоры В R В .

Статически определимая балка, которая получается из заданной путем удаления «лишней» связи называется основной системой (б).

Теперь эту систему следует представить эквивалентной заданной. Для этого загружаем основную систему заданной нагрузкой, а в точке В приложим «лишнюю» реакцию R В (рис.в ).

Однако для эквивалентности этого недостаточно , поскольку в такой балке точка В может перемещаться по вертикали , а в заданной балке (рис.а ) такого произойти не может. Поэтому добавляем условие , что прогиб т. В в основной системе должен быть равен 0 . Прогиб т. В складывается из прогиба от действующей нагрузки Δ F и от прогиба от «лишней» реакции Δ R .

Тогда составляем условие совместности перемещений :

Δ F + Δ R =0 (1)

Теперь остается вычислить эти перемещения (прогибы ).

Загружаем основную систему заданной нагрузкой (рис.г) и построим грузовую эпюру М F (рис. д ).

В т.В приложим и построим эп. (рис.е,ж ).

По формуле Симпсона определим прогиб от действующей нагрузки .

Теперь определим прогиб от действия «лишней» реакции R В , для этого загружаем основную систему R В (рис.з ) и строим эпюру моментов от ее действия М R (рис. и ).

Составляем и решаем уравнение (1) :

Построим эп. Q и М (рис. к,л ).

Строим эпюру Q.

Построим эпюру М методом характерных точек . Расставляем точки на балке — это точки начала и конца балки (D,A ), сосредоточенного момента (B ), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K ) — это дополнительная точка для построения параболической кривой.

Определяем изгибающие моменты в точках. Правило знаков см. — .

Момент в т. В будем определять следующим образом. Сначала определим:

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

Строим эпюру M . Участок АВ параболическая кривая (правило «зонтика»), участок ВD прямая наклонная линия .

Для балки определить опорные реакции и построить эпюры изгибающих моментов (М ) и поперечных сил (Q ).

  1. Обозначаем опоры буквами А и В и направляем опорные реакции R А и R В .

Составляем уравнения равновесия .

Проверка

Записываем значения R А и R В на расчетную схему .

2. Построение эпюры поперечных сил методом сечений . Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения .

сеч. 1-1 ход слева .

Сечение проходит по участку с равномерно распределенной нагрузкой , отмечаем размер z 1 влево от сечения до начала участка . Длина участка 2 м. Правило знаков для Q — см.

Строим по найденным значением эпюру Q .

сеч. 2-2 ход справа .

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z 2 вправо от сечения до начала участка. Длина участка 6 м.

Строим эпюру Q .

сеч. 3-3 ход справа .

сеч. 4-4 ход справа.

Строим эпюру Q .

3. Построение эпюры М методом характерных точек .

Характерная точка – точка, сколь-либо заметная на балке. Это точки А , В , С , D , а также точка К , в которой Q =0 и изгибающий момент имеет экстремум . Также в середине консоли поставим дополнительную точку Е , поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

Итак, точки расставлены, приступаем к определению в них значений изгибающих моментов . Правило знаков — см. .

Участки NA, AD параболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных), участки DС, СВ прямые наклонные линии.

Момент в точке D следует определять как слева, так и справа от точки D . Сам момент в эти выражения не входит . В точке D получим два значения с разницей на величину m скачок на его величину.

Теперь следует определить момент в точке К (Q =0). Однако сначала определим положение точки К , обозначив расстояние от нее до начала участка неизвестным х .

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

Но поперечная сила в т. К равна 0 , а z 2 равняется неизвестному х .

Получаем уравнение:

Теперь, зная х , определим момент в точке К с правой стороны.

Строим эпюру М . Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

Для заданной схемы консольной балки требуется построить эпюры поперечной силы Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции .

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры R A и опорный момент М A из уравнений равновесия.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0 , в заделеке — величине реакции R A.
3. Для построения составим выражения для их определения на участках. Эпюру моментов построим на волокнах, т.е. вниз.

(эпюра единичных моментов уже была построена ранее)

Решаем уравнение (1), сокращаем на EI

Статическая неопределимость раскрыта , значение «лишней» реакции найдено. Можно приступать к построению эпюр Q и M для статически неопределимой балки... Зарисовываем заданную схему балки и указываем величину реакции R b . В данной балке реакции в заделке можно не определять, если идти ходом справа.

Построение эпюры Q для статически неопределимой балки

Строим эпюру Q.

Построение эпюры М

Определим М в точке экстремума – в точке К . Сначала определим её положение. Обозначим расстояние до неё как неизвестное «х ». Тогда

Строим эпюру М.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Проектный и проверочный расчеты. Для балки с построенными эпюрами внутренних усилий подобрать сечение в виде двух швеллеров из условия прочности по нормальным напряжениям. Проверить прочность балки, используя условие прочности по касательным напряжениям и энергетический критерий прочности. Дано:

Покажем балку с построенными эпюрами Q и М

Согласно эпюре изгибающих моментов опасным является сечение С, в котором М С =М max =48,3кНм.

Условие прочности по нормальным напряжениям для данной балки имеет вид σ max =M C /W X ≤σ adm . Требуется подобрать сечение из двух швеллеров.

Определим необходимое расчетное значение осевого момента сопротивления сечения:

Для сечения в виде двух швеллеров согласно принимаем два швеллера №20а , момент инерции каждого швеллера I x =1670см 4 , тогда осевой момент сопротивления всего сечения:

Перенапряжение (недонапряжение) в опасных точках посчитаем по формуле: Тогда получим недонапряжение :

Теперь проверим прочность балки, исходя из условия прочности по касательным напряжениям. Согласно эпюре поперечных сил опасными являются сечения на участке ВС и сечение D. Как видно из эпюры, Q max =48,9 кН.

Условие прочности по касательным напряжениям имеет вид:

Для швеллера №20 а: статический момент площади S x 1 =95,9 см 3 , момент инерции сечения I x 1 =1670 см 4 , толщина стенки d 1 =5,2 мм, средняя толщина полки t 1 =9,7 мм, высота швеллера h 1 =20 см, ширина полки b 1 =8 см.

Для поперечного сечения из двух швеллеров:

S x = 2S x 1 =2·95,9=191,8 см 3 ,

I x =2I x 1 =2·1670=3340 см 4 ,

b=2d 1 =2·0,52=1,04 см.

Определяем значение максимального касательного напряжения:

τ max =48,9·10 3 ·191,8·10 −6 /3340·10 −8 ·1,04·10 −2 =27МПа.

Как видно, τ max <τ adm (27МПа<75МПа).

Следовательно, условие прочности выполняется.

Проверяем прочность балки по энергетическому критерию .

Из рассмотрения эпюр Q и М следует, что опасным является сечение С, в котором действуют M C =M max =48,3 кНм и Q C =Q max =48,9 кН.

Проведем анализ напряженного состояния в точках сечения С

Определим нормальные и касательные напряжения на нескольких уровнях (отмечены на схеме сечения)

Уровень 1-1: y 1-1 =h 1 /2=20/2=10см.

Нормальные и касательные напряжения:

Главные напряжения:

Уровень 2−2: y 2-2 =h 1 /2−t 1 =20/2−0,97=9,03см.


Главные напряжения:


Уровень 3−3: y 3-3 =h 1 /2−t 1 =20/2−0,97=9,03см.

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 4−4: y 4-4 =0.

(в середине нормальные напряжения равны нулю, касательные максимальны, их находили в проверке прочности по касательным напряжениям)

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 5−5:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 6−6:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 7−7:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

В соответствии с выполненными расчетами эпюры напряжений σ, τ, σ 1 , σ 3 , τ max и τ min представлены на рис.

Анализ этих эпюр показывает , что в сечении балки опасными являются точки на уровне 3-3 (или 5-5 ), в которых:

Используя энергетический критерий прочности, получим

Из сравнения эквивалентного и допускаемого напряжений следует, что условие прочности также выполняется

(135,3 МПа<150 МПа).

Неразрезная балка нагружена во всех пролетах. Построить эпюры Q и M для неразрезной балки.

1. Определяем степень статической неопределимости балки по формуле:

n= Соп -3= 5-3 =2, где Соп – число неизвестных реакций, 3 – число уравнений статики . Для решения данной балки требуется два дополнительных уравнения.

2. Обозначим номера опор с нулевой по порядку (0,1,2,3 )

3. Обозначим номера пролетов с первого по порядку (ι 1, ι 2, ι 3 )

4. Каждый пролет рассматриваем как простую балку и строим для каждой простой балки эпюры Q и M. То, что относится к простой балке , будем обозначать с индексом «0 », то, что относится к неразрезной балке, будем обозначать без этого индекса. Таким образом, — это поперечная сила и изгибающий момент для простой балки.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации