Первые живые существа. Империя: Живые организмы

По палеонтологическим данным, основанным на изучении древнейших горных пород Земли, первые живые организмы появились на Земле около 3,5 млрд лет т.н.

По существу, первая живая клетка, так же, как и ее неживой прообраз — коацерватная капля, была капелькой первичного океана, окруженной водоотталкивающей оболочкой, однако белки и нуклеиновые кислоты в ней не были случайным набором органических веществ. Они уже научились «понимать» друг друга, научились взаимодействовать.

Первые живые клетки уже обладали важнейшим свойством каждого живого организма — способностью к точному самовоспроизведению, самокопированию.

Питались они готовыми органическими веществами, которые образовались на ранних этапах формирования Земли абиогенным путем. По мнению большинства ученых, в период появления первых живых организмов свободного кислорода в атмосфере древней Земли еще не было, поэтому у них был анаэробный (безкислородный) тип дыхания. Таким образом, первыми живыми организмами на Земле были, по-видимому, гетеротрофные (питающиеся готовыми органическими веществами) бактерии- анаэробы (рис. 1).

Несмотря на то что бактерии-анаэробы возникли в глубокой древности, они широко распространены на Земле и в настоящее время. Их можно встретить и в банке с простоквашей, и в бочонке с солеными огурцами или капустой. Молочнокислые бактерии — факультативные анаэробы (они могут расти и развиваться в присутствии кислорода, но в процессе дыхания кислород не используют).

Рис. 1. Симбиотическая гипотеза происхождения эукариот

Анаэробами являются и многие почвенные бактерии, например возбудители столбняка, газовой гангрены, ботулизма. Все они облигатные анаэробы. В отличие от факультативных анаэробов, облигатные анаэробы не переносят присутствия кислорода в окружающей среде, кислород для них — яд. Именно поэтому опасность заражения столбняком гораздо выше, если рана колотая и инфекция в ней развивается без доступа кислорода. Значительно менее опасны открытые раны и ссадины. Газовая гангрена тоже, как правило, начинает развиваться после наложения на поврежденную конечность препятствующей доступу кислорода гипсовой повязки. Опасность тяжелого пищевого отравления — ботулизма — возникает при домашнем консервировании, когда воздух удален предварительным кипячением, а герметичная крышка препятствует поступлению кислорода извне. В случае засолки огурцов или грибов в открытой посуде возбудитель ботулизма не разовьется, поскольку он — облигатный анаэроб. При домашнем консервировании возбудитель ботулизма уничтожить чрезвычайно трудно, поскольку его споры выдерживают 5-6 часов непрерывного кипячения. Поэтому промышленное консервирование проводят перегретым паром под давлением при температуре не 100, а 130°С в течение 1-2 часов.

Бактерии-анаэробы древней Земли питались готовыми органическими веществами, образовавшимися в больших количествах на ранних этапах формирования Земли. Абиогенному синтезу органических веществ способствовали высокая температура атмосферы и бурная вулканическая деятельность. К моменту появления первых живых организмов Земля остыла и интенсивность абиогенного синтеза органических веществ значительно снизилась. Развитие анаэробов должно было неизбежно истощить запасы органических веществ, что, в свою очередь, привело бы к гибели всех живых организмов. Возможно, история развития жизни на Земле на этом и закончилась бы, если бы спустя всего 100 млн лет (3,4 млрд лет тому назад) под влиянием жесткой конкуренции за органические вещества на Земле не появилось новое поколение живых организмов - фото синтезирующие бактерии (см. рис. 1).

Уникальной особенностью этих живых существ была способность осуществлять фотосинтез , т.е. синтезировать органические вещества из неорганических с использованием энергии солнечного света. У первых фотосинтезирующих бактерий был необычный аноксигенный тип фотосинтеза (он протекает без выделения кислорода).

Как известно, строительными элементами, из которых фото- синтезирующие организмы создают органические вещества, являются углекислый газ и водород. Первые фотосинтезирующие бактерии отнимали водород не от воды, как это происходит у большинства современных фотосинтезирующих организмов, а от сероводорода (H 2 S), поскольку затраты энергии на отрыв атомов водорода от молекулы сероводорода в 7 раз меньше, чем на отрыв его от молекулы воды.

Фотосинтез с выделением кислорода появился позднее у цианобактерий (сине-зеленых водорослей). Именно цианобактерии впервые осуществили фотолиз воды, при котором с помощью энергии солнечного света водород, необходимый для биосинтеза органических веществ, отрывается от молекулы воды, а в качестве побочного продукта образуется свободный кислород.

Накопление в атмосфере свободного кислорода привело к коренному преобразованию условий жизни на Земле. К моменту появления первых живых организмов Земля сильно остывает, снижается количество грозовых разрядов в атмосфере, затухает вулканическая деятельность. Практически единственным источником энергии для абиогенного синтеза органических веществ является ультрафиолетовое излучение Солнца.

С появлением кислорода в верхних слоях атмосферы, на высоте 15-30 км, сформировался озоновый экран, защитивший живые организмы от губительного действия ультрафиолетового излучения, что послужило предпосылкой возникновения жизни не только в воде, но и на суше. Одновременно озоновый экран, снизив интенсивность падающего на Землю ультрафиолетового излучения, практически остановил абиогенный синтез органических веществ, вследствие чего дальнейшее существование жизни на Земле стало полностью зависеть от дея тельности фотосинтезирующих организмов.

Фотосинтезирующие бактерии, в первую очередь цианобактерии, и в настоящее время широко распространенная и процветающая группа живых организмов. «Цветение» воды в конце лета обусловлено главным образом бурным развитием циано- бактерий. Они способны не только к автотрофному питанию путем фотосинтеза, но и к гетеротрофному питанию готовыми органическими веществами. Поэтому загрязнение водоемов органическими веществами под воздействием хозяйственной деятельности человека создает благоприятные условия для развития цианобактерий (сине-зеленых водорослей), которые, бурно размножаясь, вытесняют эукариотические водоросли, что снижает продуктивность водоемов, приводя к гибели планктонных организмов и рыб.

Как отмечалось ранее, главный (целевой) продукт фотосинтеза — богатые энергией органические вещества, которые используются живыми организмами как для построения своего чела, так и для получения необходимой для их жизнедеятельности энергии, кислород же является побочным продуктом фотосинтеза. Поэтому для наиболее древних но происхождению живых организмов — бактерий-анаэробов и первых фотосинтезирующих бактерий кислород — это яд. Однако вслед за фотосинтезирующими бактериями на Земле появились живые организмы, которые научились не только защищаться от кислорода, но и использовать его — научились дышать кислородом. Это были бактерии-аэробы (или бактерии-окислители).

Биологические преимущества кислородного дыхания очевидны: при кислородном окислении органических веществ из единицы (например, из 1 г) органических веществ можно извлечь в 19 раз больше энергии, чем при бескислородном дыхании. Вследствие этою бактерии-аэробы оказались способными значительно экономнее расходовать органические вещества, чем анаэробы, что, в свою очередь, позволило им существовать в условиях относительно низких концентраций органических веществ.

Симбиотическая гипотеза происхождения эукариот

На ранних этапах биологической эволюции на Земле последовательно возникают, а затем сосуществуют 3 поколения прокариот: бактерии-анаэробы, фотосинтезирующие бактерии и бактерии- аэробы (см. рис. 1).

Фотосинтезирующие бактерии могли создавать органические вещества из неорганических, а бактерии-аэробы умели очень экономно их расходовать. Лишенные этих преимуществ бактерии-анаэробы вынуждены были эксплуатировать полезные свойства других живых организмов. Один из способов одностороннего использования одного организма другим — хищничество. На определенном этапе развития от бактерий-анаэробов произошли хищные амебовидные организмы, способные захватывать с помощью ложноножек и поглотать как фотосинтезирующих бактерий, так и бактерий-аэробов.

Однако не все амебовидные хищники переваривали захваченные бактерии, в некоторых случаях бактерии могли жить и размножаться внутри цитоплазмы хищника. Возникшее таким образом сообщество живых организмов обладало многими ценными свойствами: способностью к фотосинтезу, обусловленной деятельностью фотосинтезирующих бактерий, способностью к экономному и эффективному использованию органических веществ благодаря кислородному типу дыхания, характерному для бактерий-аэробов, и, наконец, способностью к активному передвижению и захвату добычи, свойственному хищной клетке-носите- лю. Со временем взаимовыгодные, симбиотические отношения этих трех групп организмов закрепились, стали устойчивыми: фотосинтезирующие бактерии превратились в хлоропласт ы, а аэробные бактерии-окислители - в энергетические станции клетки — митохондрии. Как митохондрии, так и хлоропласты и в настоящее время сохраняют собственный наследственный аппарат, размножаются независимо отделения клетки и наследуются через цитоплазму но материнской линии.

Для управления сложным сообществом живых организмов и защиты собственного генетического материала (ведь другие организмы, входящие в сообщество, имели свою генетическую программу) у клетки-носителя возникает специальная клеточная органелла - ядро.

Живые организмы, клетки которых имеют оформленное ядро, называются эукариотами (от греч. еu - хорошо, полностью иkaryon — ядро). Все растения, животные и грибы — эукариоты. Наследственная информация в ядрах эукариотических клеток хранится в виде особых структур — хромосом, отчетливо видных под световым микроскопом в момент деления клетки. Первые эукариотические клетки появились на Земле около 2 млрд лет т.н.

Более древние по происхождению бактерии не имеют оформленного ядра.

Живые организмы, клетки которых не имеют оформленного ядра, называются прокариотами (от лат. pro — перед, раньше и греч. karyon — ядро). Все бактерии, в том числе и фотосинтезирующие, — прокариоты. Наследственная информация представлена в них одной-единственной кольцевой молекулой ДНК, лежащей непосредственно в цитоплазме и не различимой в обычный световой микроскоп.

Поскольку но современным научным представлениям вес эукариотические клетки представляют собой симбиотические сообщества двух или трех живых организмов, изложенную выше гипотезу происхождения эукариот называют симбиотической.

Первые эукариотические клетки, по-видимому, представляли собой амебовидные существа, многие из которых содержали как митохондрии, так и хлоропласты.

Около 1,5 млрд лет т.н. от них возникают более совершенные эукариотические организмы, способные к быстрому активному передвижению — древние жгутиковые (см. рис. 1). Принято считать, что жгутики, так же как в свое время митохондрии и хлоропласты, произошли от каких-то древних свободноживущих прокариот.

Древние жгутиковые, видимо, сочетали свойства растений и животных. Со временем те из них, которые оказались в среде с высоким содержанием органических веществ, утратили хлоропласты и превратились в одноклеточных животных — простейших, а сохранившие хлоропласты дали начало растениям. Естественно, наиболее древние по происхождению растения — одноклеточные, подвижные и имеют жгутики.

Дальнейший эволюционный прогресс животных связан с возрастанием роли активного передвижения, что вызвано необходимостью поиска пищи и захвата добычи. Совершенствуется и система управления движением, что, в конечном итоге, приводит к возникновению высокоорганизованной нервной системы и, наконец, интеллекта.

В то же время растения, обеспечивающие себя питанием за счет фотосинтеза, в процессе эволюции утрачивают способность к передвижению и приобретают множество приспособлений, повышающих эффективность фотосинтеза.

Таким образом, около 1,5 млрд лет т.н. от единого предка — древнего жгутикового возникают два важнейших царства живых организмов — царство растения и царство животные.

Строение первых живых организмов хотя и было гораздо совершеннее, чем у коацерватных капелек, но все же оно было несравненно проще нынешних живых существ. Естественный отбор, начавшийся в коацерватных капельках, продолжался и с появлением жизни. В течение долгого времени строение живых существ все более улучшалось, приспособлялось к условиям существования.

Вначале пищей для живых существ были только органические вещества, возникшие из первичных углеводородов. Но с течением времени количество таких веществ уменьшилось. В этих условиях первичные живые организмы выработали в себе способность строить органические вещества из элементов неорганической природы - из углекислоты и воды. В процессе последовательного развития у них появилась способность поглощать энергию солнечного луча, разлагать за счет этой энергии углекислоту и строить в своем теле из ее углерода и воды органические вещества. Так возникли простейшие растения - сине-зеленые водоросли. Остатки сине-зеленых водорослей обнаруживаются в древнейших отложениях земной коры.

Другие живые существа сохранили прежний способ питания, но пищей им стали служить первичные растения. Так возникли в своем первоначальном виде животные.

На заре жизни и растения, и животные были мельчайшими одноклеточными существами, подобными живущим в наше время бактериям, сине-зеленым водорослям, амебам. Большим событием в истории последовательного развития живой природы стало возникновение многоклеточных организмов, т. е. живых существ, состоящих из многих клеток, объединенных в один организм. Постепенно, но значительно быстрее, чем раньше, живые организмы становились все сложнее и разнообразнее.

С образованием сложных ультра молекулярных систем (пробионтов) включающих нуклеиновые кислоты, белки ферменты и механизм генетического кода, появляется жизнь на Земле. Пробионты нуждались в различных химических соединениях - нуклеотидах, аминокислотах и др. Из-за низкой степени генетической информации, пробионты обладали достаточно ограниченными возможностями. Дело в том, что они использовали для своего роста готовые органические соединения, синтезированные в ходе химической эволюции, и если бы жизнь на своем раннем этапе существовала только в форме одного вида организмов, то первичный бульон был бы достаточно быстро исчерпан.

Однако благодаря тенденции к приобретению большого разнообразия свойств, и в первую очередь, к возникновению способности синтезировать органические вещества из неорганических соединений с использованием солнечного света, этого не произошло.

В начале следующего этапа образуются биологические мембраны-органеллы, ответственные за форму, структуру и активность клетки. Биологические мембраны построены из агрегатов белков и липидов, способных отграничить органическое вещество от среды и служить защитной молекулярной оболочкой. Предполагается, что образование мембран могло начаться еще в процессе формирования коацерватов. Но для перехода от коацерватов к живой материи были необходимы не только мембраны, но и катализаторы химических процессов - ферменты или энзимы. Отбор коацерватов усиливал накопление белково-подобных полимеров, ответственных за ускорение химических реакций. Результаты отбора фиксировались в строении нуклеиновых кислот. Система успешно работающих последовательностей нуклеотидов в ДНК усовершенствовалась именно путем отбора. Возникновение самоорганизации зависело как от исходных химических предпосылок, так и от конкретных условий земной среды. Самоорганизация возникла как реакция на определенные условия. При самоорганизации отсеивалось множество различных неудачных вариантов, до тех пор, пока основные черты строения нуклеиновых кислот и белков не достигли оптимального соотношения с точки зрения естественного отбора.

Благодаря предбиологическому отбору самих систем, а не только отдельных молекул, системы приобрели способность совершенствовать свою организацию. Это был уже следующий уровень биохимической эволюции, который обеспечивал возрастание их информационных возможностей. На последнем этапе эволюции обособленных органических систем сформировался генетический код. После образования генетического кода эволюция развивается вариациями. Чем дальше она продвигается во времени, тем многочисленнее и сложнее вариации.

Однажды возникнув, жизнь стала развиваться быстрыми темпами показывая ускорение эволюции во времени. Так, развитие от первичных пробионтов до аэробных форм потребовало около 3 млрд лет, тогда как с момента возникновения наземных растений и животных прошло около 500 млн лет; птицы и млекопитающие развились от первых наземных позвоночных за 100 млн лет, приматы выделились за 12-15 млн лет, для становления человека потребовалось около 3 млн лет.

Заключение .

Истинная основа жизни образовалась в результате появления клетки, в которой биологические мембраны объединили отдельные органеллы в единое целое.

Первые клетки были примитивны и не имели ядра. Но такие клетки существуют и в настоящее время. Удивительно, ведь они появились более 3 млрд. лет назад.

Первые клетки были прообразом всех живых организмов: растений, животных, бактерий. Позже, в процессе эволюции, под воздействием дарвиновских законов естественного отбора клетки совершенствовались и появились специализированные клетки высших многоклеточных, растений и животных - метафитов и метазоа.

В качестве объединяющей зависимости между химической эволюцией переходящей затем в биохимическую и биологическую эволюцию можно привести следующую:

    простые молекулы

    сложные макромолекулы и ультра молекулярные системы (пробионты)

    одноклеточные организмы.

Итак, живой мир сотворен. На это потребовалось более 3 миллиардов лет, и это было самым трудным. Не поддается перечислению огромное количество вариантов развития исходных углеродных соединений. Однако самым важным был результат – возникновение жизни на Земле.

Несмотря на важность знаний, относительно условий, причин и процессов появления жизни на Земле в наше время НТП многие не уделяют этому должного внимания. Хотя для всех должно быть очень ясно, что жизнь, окружающая нас, формировалась в течение такого гигантского периода времени, который просто неподвластен нашему сознанию. И только поэтому, тот ущерб, который уже был нанесен всему живому за прошедший век, пока еще не привел к необратимым последствиям. Однако, благодаря НТП человек сам, не осознавая того, создает все более опасные для всего живого изобретения. И, к сожалению, никто не знает, какое из них будет последним….

А ведь мы часть живого мира, на создание которого потребовались миллиарды лет. Думаю, есть о чем задуматься.

Литература.

    Ващекин Н.П. «Концепции современного естествознания», М, МГУК, 2000

    Потеев М.И. «Концепции современного естествознания», Санкт-Петербург, Питер, 1999

    Югай Г. А. «Общая теория жизни», М., Мысль, 1985

Этому «ожерелью» из мельчайших клеток бактерий более 2 миллиардов лет.

Каким бы образом ни появились первые молекулы, потребовалось бесконечно долгое время, чтобы некоторые из них смогли образовать первые живые организмы. Это произошло примерно 3,8 миллиарда лет назад, когда условия на Земле стали более благоприятными для жизни.

Первые следы жизни

Бактерия — примитивная клетка
Самая простая и самая примитивная клетка — бактерия передвигается благодаря колебаниям жгутиков. Она окружена мембраной, состоящей из внутреннего и внешнего защитного слоя. Мембрана изолирует содердержимое клетки (цитоплазму). Цитоплазма — желеобразная жидкость, в которой плавают все субстанции, необходимые для выживания бактерии. Поскольку ядро отсутствует, ДНК, в которой заложена «программа» клетки, находится прямо в цитоплазме. Бактерии размножаются простым делением.

Самые древние следы жизни были обнаружены на северо-западе Австралии в Варравооне, в горных породах возрастом 3,5 миллиарда лет. Но жизнь, безусловно, возникла раньше: еще более древние породы найдены на одном из островов на широте Гренландии. Их возраст 3,8 миллиарда лет. Они не содержат окаменевших остатков или отпечатков, которые можно было бы изучать, но их химическая структура указывает на то. что в период их формирования уже существовали живые организмы. Ископаемые Варравооны содержат микроскопические остатки клеток в форме маленьких цилиндров, по расположению напоминающих жемчужное ожерелье. Эти мельчайшие ископаемые очень похожи на современные бактерии, в частности, на те, которые называются «цианобактерии». В отличие от миллиардов клеток, составляющих человеческое тело, цианобактерии способны жить обособленно, хотя и соединяются иногда в «ожерелья». Итак, ископаемые Варравооны представляют собой окаменевшие остатки одноклеточных живых организмов, т. е. организмов, состоящих из одной клетки. Такими и сегодня являются все одноклеточные микроорганизмы. Они настолько малы (сотая доля миллиметра), что очень трудно не только изучать, но даже находить их в ископаемом состоянии. На протяжении более 2 миллиардов лет микроскопические цианобактерии являлись единственными обитателями нашей планеты.

«Каменные ковры»: строматолиты

Строматолиты в разрезе напоминают пирожное из слоеного теста

Наиболее многочисленные ископаемые клетки найдены в породах,образовавшихся на побережьях теплых морей. Они получили название «строматолиты». Самые древние из них имеют возраст около 3,5 миллиарда лет. Снаружи строматолиты выглядят как массивные валуны в форме подушек или цветной капусты. Рассматривая их в разрезе под микроскопом, можно различить напластования многочисленных слоев — словно тонкие пластинки нагромождены друг на друга. Действительно, эти породы формировались очень медленно, слой за слоем, и являются результатом деятельности мельчайших одноклеточных организмов, бактерий, обитающих в теплых морях на небольшой глубине. Между 2,5 и 1 миллиардом лет назад рифы, образованные строматолитами, были очень широко распространены. Сегодня их можно увидеть лишь в очень редких, Багамах и в Красном море. Бактерии, из которых образовались строматолиты, — самые простые и самые примитивные из живых организмов. Они состоят из одной клетки, не имеющей ядра, как и все бактерии, и почти не изменились за 3 миллиарда лет. Сегодня мириады бактерий населяют землю, атмосферу, морские глубины. Они могут жить на живом организме или внутри него, питаясь за его счет.

Первая жизнь

В это трудно поверить, но на планете Земля до сих существуют те самые первые организмы, которые сыграли величайшую роль в дальнейшей эволюции живой природы. Ученые знали о них еще в 18-м веке, но только в 30-х гг. 20-го века приоткрылась завеса происхождения и тайна их образования. Речь идет о строматолитах.

Стромалиты

Строматолит (с греч. stromatos - подстилка, lithos - камень) - это ничто иное, как плотное слоистое образование в толщах известняков и доломитов, возникающее в результате жизнедеятельности колоний сине-зеленых водорослей и других микроорганизмов. Встречаются строматолиты на Земле с протерозоя и на сегодня установлено, что самые древние представители могут похвастаться возрастом примерно в 3,5 млрд. лет. При чем эти самые представители ни капельки не изменились с тех времен.

В 30-х гг. 20 века было совершено одно из самых примечательных событий в классической биологии. На литорали залива ШаркБэй (Австралия) и на атлантическом побережье Багамских островов были найдены небольшие рифовые постройки неизвестного ранее типа. При внимательном изучении это оказались современные строматолиты!

Результат деятельности цианобактерий

Именно тогда стало ясно, что строматолит образуется в результате жизнедеятельности уникального прокариотного существа - цианобактериального мата. Цианобактериальный мат представляет собой многослойный "ковер", толщиной до 2 см. Состоит он из цианобактерий и других микроорганизмов. Но по мимо того, что мат состоит из слоев, они выполняют различные, но строго распределенные, функции. Таким образом, это полноценный живой организм, каждая часть которого выполняет четко свои функции и дальнейшие исследования показали, что цианобактериальный мат является одной из самых сбалансированных экосистем в природе.

Живут строматолиты в экстремальных условиях - в пещерах, очень соленых озерах и долинах, а также в горячих источниках. И это не удивительно, ведь именно такими, экстремальными, были условия жизни на Земле 3,5 млрд. лет назад. И только благодаря фотосинтетирующей работе цианобактерий современная атмосфера богата кислородом. Вот такие вот они удивительные, первые живые организмы!

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации