Электроны и электромагнитные волны. Лекция Распространение электромагнитных волн

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.

Электромагнитные волны – это результат многолетних споров и тысяч экспериментов. Доказательство наличия сил природного происхождения, способных перевернуть сложившееся общество. Это фактическое принятие простой истины – мы слишком мало знаем о мире, в котором живем.

Физика – королева среди наук о природе, способная дать ответы на вопросы происхождения не только жизни, но и самого мира. Она дает ученым способность изучать электрическое и магнитное поле, взаимодействие которых порождает ЭМВ (электромагнитные волны).

Что такое электромагнитная волна

Не так давно на экраны нашей страны вышел фильм «Война токов» (2018), где с ноткой художественного вымысла рассказывается о споре двух великих ученых Эдисона и Теслы. Один пытался доказать выгоду от постоянного тока, другой — от переменного. Эта продолжительная битва закончилась только в седьмом году двадцать первого века.

В самом начале «сражения» другой ученый, занимаясь проработкой теории относительности, описывал электричество и магнетизм как похожие явления.

В тридцатом году девятнадцатого века физик английского происхождения Фарадей открыл явление электромагнитной индукции и ввел термин единства поля электрического и магнитного. Также он утверждал, что движение в этом поле ограничено скоростью света.

Чуть позже теория английского ученого Максвелла поведала о том, что электричество вызывает магнитный эффект, а магнетизм — появление электрического поля. Поскольку оба этих поля движутся в пространстве и времени, то образуют возмущения – то есть электромагнитные волны.

Говоря проще электромагнитная волна – это пространственное возмущение электромагнитного поля.

Экспериментально существование ЭМВ доказал немецкий ученый Герц.

Электромагнитные волны, их свойства и характеристика

Электромагнитные волны характеризуются следующими факторами:

  • длиной (достаточно широким диапазоном);
  • частотой;
  • интенсивностью (или амплитудой колебания);
  • количеством энергии.

Основное свойство всех электромагнитных излучений – это величина длины волны (в вакууме), которая обычно указывается в нанометрах для видимого светового спектра.

Каждый нанометр представляет тысячную часть микрометра и измеряется расстоянием между двумя последовательными пиками (вершинами).

Соответствующая частота излучения волны – это число синусоидальных колебаний и обратная пропорциональность длине волны.

Частота обычно измеряется в Герцах. Таким образом, более длинные волны соответствуют более низкой частоте излучения, а более короткие — высокой частоте излучения.

Основные свойства волн:

  • преломление;
  • отражение;
  • поглощение;
  • интерференция.

Скорость электромагнитной волны

Фактическая скорость распространения электромагнитной волны зависит от материала, которым обладает среда, ее оптической плотности и наличия такого фактора как давление.

Кроме того, различные материалы имеют разную плотность «упаковки» атомов, чем ближе они расположены, тем меньше расстояние и выше скорость. В результате скорость электромагнитной волны зависит от материала, через который она движется.

Подобные эксперименты ставятся в адронном коллайдере, где главным инструментом воздействия является заряженная частица. Изучение электромагнитных явлений происходит там на квантовом уровне, когда свет раскладывается на мельчайшие частицы – фотоны. Но квантовая физика – это отдельная тема.

Согласно теории относительности, наибольшая скорость распространения волны не может превышать световую. Конечность скоростного предела в своих трудах описал Максвелл, объясняя это наличием нового поля – эфир. Современная официальная наука подобную взаимосвязь пока не изучала.

Электромагнитное излучение и его виды

Электромагнитное излучение состоит из электромагнитных волн, которые наблюдаются в виде колебания электрического и магнитного полей, распространяющиеся на скорости света (300 км за секунду в вакууме).

Когда ЭМ-излучение взаимодействует с веществом, его поведение качественно меняется по мере изменения частоты. Отчего оно преобразуется в:

  1. Радиоизлучение. На радиочастотах и микроволновых частотах эм–излучение взаимодействует с веществом в основном в виде общего набора зарядов, которые распределены по большому количеству затронутых атомов.
  2. Инфракрасное излучение. В отличие от низкочастотного радиоизлучения и СВЧ-излучения, инфракрасный излучатель обычно взаимодействует с диполями, присутствующими в отдельных молекулах, которые по мере вибрации изменяются на концах химической связи на атомном уровне.
  3. Видимое световое излучение. По мере того как частота увеличивается в видимый ряд, фотоны имеют достаточную энергию для изменения скрепленной структуры некоторых отдельно взятых молекул.
  4. Ультрафиолетовое излучение. Частота увеличивается. В ультрафиолетовых фотонах теперь достаточно энергии (более трех вольт), чтобы воздействовать вдвойне на связи молекул, постоянно химически их перестраивая.
  5. Ионизирующее излучение. На самых высоких частотах и наименьших по длине волны. Поглощение этих лучей материей затрагивает весь гамма-спектр. Самый известный эффект – радиация.

Что является источником электромагнитных волн

Мир, согласно молодой теории о происхождении всего, возник благодаря импульсу. Он освободил колоссальную энергию, которую назвали большим взрывом. Так в истории мироздания появилась первая эм-волна.

В настоящее время к источникам формирования возмущений относятся:

  • эмв излучает искусственный вибратор;
  • результат колебания атомных групп или частей молекул;
  • если происходит воздействие на внешнюю оболочку вещества (на атомно-молекулярном уровне);
  • эффект схожий со световым;
  • при ядерном распаде;
  • последствие торможения электронов.

Шкала и применение электромагнитных излучений

Под шкалой излучения понимается большой диапазон частоты волны от 3·10 6 ÷10 -2 до 10 -9 ÷ 10 -14 .

Каждая часть электромагнитного спектра обладает обширной областью применения в нашей повседневной жизни:

  1. Волны маленькой длины (микроволны). Данные электроволны используются в качестве спутникового сигнала, поскольку способны миновать атмосферу земли. Также немного усиленный вариант используется для разогрева и готовки на кухне – это микроволновая печь. Принцип приготовления прост – под действием микроволнового излучения поглощаются и ускоряются молекулы воды, отчего блюдо нагревается.
  2. Длинные возмущения используется в радиотехнологиях (радиоволны). Их частота не позволяет пройти облака и атмосферу, благодаря чему нам доступно Фм-радио и телевидение.
  3. Инфракрасное возмущение непосредственно связано с теплом. Увидеть его практически невозможно. Попробуйте заметить без специального оборудования луч из пульта управления вашего телевизора, музыкального центра или магнитолы в машине. Приборы, способные считывать подобное волны, используются в армиях стран (прибор ночного виденья). Также в индуктивных плитах на кухнях.
  4. Ультрафиолет также имеет отношение к теплу. Самый мощный природный «генератор» такого излучения – это солнце. Именно из-за действия ультрафиолета на коже человека образуется загар. В медицине этот тип волн используется для дезинфекции инструментов, убивая микробы и .
  5. Гамма-лучи – это самый мощный тип излучения, в котором сконцентрировалось коротковолновое возмущение с большой частотой. Энергия, заключенная в эту часть электромагнитного спектра, дает лучам большую проникающую способность. Применима в ядерной физике – мирное, ядерное оружие – боевое применение.

Влияние электромагнитных волн на здоровье человека

Измерение влияния эмв на человека – это обязанность ученых. Но не нужно быть специалистом, чтобы оценить интенсивность ионизирующего излучения – оно провоцирует изменения на уровне ДНК человека, что влечет за собой такие серьезные заболевания как онкология.

Не зря пагубное воздействие катастрофы ЧАЭС считается одной самых опасных для природы. Несколько квадратных километров некогда красивой территории стали зоной полного отчуждения. До конца века взрыв на ЧАЭС представляет опасность, пока не закончится полураспад радионуклидов.

Некоторые типы эмв (радио, инфракрасные, ультрафиолет) не наносят человеку сильного вреда и представляют собой лишь дискомфорт. Ведь магнитное поле земли нами практически не ощущается, а вот эмв от мобильного телефона может вызвать головную боль (воздействие на нервную систему).

Для того чтобы обезопасить здоровье от электромагнетизма, следует просто использовать меры разумной предосторожности. Вместо сотен часов за компьютерной игрой выйти погулять.

Владимирский областной
промышленно – коммерческий
лицей

р е ф е р а т

Электромагнитные волны

Выполнил:
ученик 11 «Б» класс
Львов Михаил
Проверил:

Владимир 2001г.

1. Вступление ……………………………………………………… 3

2. Понятие волна и ее характеристики…………………………… 4

3. Электромагнитные волны……………………………………… 5

4. Экспериментальное доказательство существования
электромагнитных волн………………………………………… 6

5. Плотность потока электромагнитного излучения ……………. 7

6. Изобретение радио …………………………………………….… 9

7. Свойства электромагнитных волн ………………………………10

8. Модуляция и детектирование…………………………………… 10

9. Виды радиоволн и их распространение………………………… 13

Вступление

Волновые процессы чрезвычайно широко распространены в природе. В природе существует два вида волн: механические и электромагнитные. Ме­ханические волны распространяются в веществе: газе, жидкости или твердом теле. Электромагнитные волны не нуждаются в каком-либо веществе для своего распростра­нения, к которым, в частности, от­носятся радиоволны и свет. Электромагнитное поле может су­ществовать в вакууме, т. е. в пространстве, не содержащем ато­мов. Несмотря на существенное отличие электромагнитных волн от механических, электромагнитные волны при своем распростра­нении ведут себя подобно механическим. Но подобно колебаниям все виды волн описываются количественно одинаковыми или почти одинаковыми законами. В своей работе я постараюсь рассмотреть причины возникновения электромагнитных волн, их свойства и применение в нашей жизни.

Понятие волна и ее характеристики

Волной называют колебания, распростра­няющиеся в пространстве с течением времени.

Важнейшей ха­рактеристикой волны является ее скорость. Волны любой природы не распространяются в пространстве мгновенно. Их скорость конечна.

При распространении механической волны движе­ние передается от одного участка тела к другому. С передачей движения связана передача энергии. Ос­новное свойство всех волн незави­симо от их природы состоит в пере­носе ими анергии без переноса вещества. Энергия поступает от источ­ника, возбуждающего колебания на­чала шнура, струны и т. д., и распро­страняется вместе с волной. Через любое поперечное сечение непрерывно течет энергия. Эта энергия слагается из кинети­ческой энергии движения участков шнура и потенциальной энергии его упругой деформации. Постепенное уменьшение амплитуды колебаний, при распространении волны связано с превращением части механической энергии во внутреннюю.

Если заставить конец растянутого резинового шнура колебаться гармонически с опреде­ленной частотой v, то эти колеба­ния начнут распространяться вдоль шнура. Колебания любого участка шнура происходят с той же часто­той и амплитудой, что и колебания конца шнура. Но только эти колеба­ния сдвинуты по фазе друг относи­тельно друга. Подобные волны назы­ваются монохроматическими .

Если сдвиг фаз между колеба­ниями двух точек шнура равен 2п, то эти точки колеблются совершенно одинаково: ведь соs(2лvt+2л) = =соs2п vt . Такие колебания назы­ваются синфазными (происходят в одинаковых фазах).

Расстояние между ближайшими друг к другу точками, колеблющими­ся в одинаковых фазах, называется длиной волны.

Связь между длиной волны λ, частотой v и скоростью распростра­нения волны c. За один период ко­лебаний волна распространяется на расстояние λ. Поэтому ее скорость определяется формулой

Так как период Т и частота v свя­заны соотношением T = 1 / v

Скорость волны равна произведению длины волны на частоту колебаний.

Электромагнитные волны

Теперь перейдем к рассмотрению непосредственно электромагнитных волн.

Фунда­ментальные законы природы могут дать гораздо боль­ше, чем заключено в тех фактах, на основе которых они получены. Одним из таких относятся открытые Макс­веллом законы электромагнетизма.

Среди бесчисленных, очень инте­ресных и важных следствий, выте­кающих из максвелловских законов электромагнитного поля, одно заслу­живает особого внимания. Это вы­вод о том, что электромагнитное взаимодействие распространяется с конечной скоростью.

Согласно теории близкодействия Перемещение заряда меняет электрическое поле вблизи него. Это переменное электрическое поле порождает переменное магнитное поле в соседних областях пространства. Переменное же магнитное поле в свою очередь порождает переменное электрическое поле и т. д.

Перемещение заряда вызывает, таким образом, «всплеск» электро­магнитного поля, который, распространяясь, охватывает все большие области окружающего пространства.

Максвелл математически дока­зал, что скорость распространения этого процесса равна скорости све­та в вакууме.

Пред­ставьте себе, что электрический заряд не просто сместился из одной точки в другую, а приведен в быстрые колебания вдоль некоторой прямой. Тогда элек­трическое поле в непосредственной близости от заряда начнет периоди­чески изменяться. Период этих изме­нений, очевидно, будет равен периоду колебаний заряда. Переменное элек­трическое поле будет порождать пе­риодически меняющееся магнитное поле, а последнее в свою очередь вызовет появление переменного элек­трического поля уже на большем расстоянии от заряда и т.д.

В каждой точке пространства электрические и магнитные поля ме­няются во времени периодически. Чем дальше расположена точка от заряда, тем позднее достигнут ее ко­лебания полей. Следовательно, на разных расстояниях от заряда коле­бания происходят с различными фа­зами.

Направления колеблющихся век­торов напряженности электрическо­го поля и индукции магнитного по­ля перпендикулярны к направлению распространения волны.

Электромагнитная волна является поперечной.

Электромагнитные волны излу­чаются колеблющимися зарядами. При этом существенно, что скорость движения таких зарядов меняется со временем, т. е. что они движутся с ускорением. Наличие ускорения - главное условие излучения электро­магнитных волн. Электромагнитное поле излучается заметным образом не только при колебаниях заряда, но и при любом быстром изменении его скорости. Интенсивность излу­ченной волны тем больше, чем боль­ше ускорение, с которым движется заряд.

Максвелл был глубоко убежден в реальности электромагнитных волн. Но он не дожил до их эксперимен­тального обнаружения. Лишь через 10 лет после его смерти электро­магнитные волны были экспериментально получены Герцем.

Экспериментальное доказательство существования

электромагнитных волн

Электромагнитные волн не видны в отличие от механических, но тогда как же они были обнаружены? Для ответа на этот вопрос рассмотрим опыты Герца.

Электромагнитная волна образу­ется благодаря взаимной связи переменных электрических и магнитных полей. Изменение одного поля при­водит к появлению другого. Как известно, чем быстрее меня­ется со временем магнитная индук­ция, тем больше напряженность воз­никающего электрического поля. И в свою очередь, чем быстрее меняется напряженность электрического поля, тем больше магнитная индукция.

Для образования интенсивных электромагнитных волн необходимо создать электромагнитные колебания достаточно высокой частоты.

Колебания высокой частоты можно получить с помощью колебательного контура. Частота колебаний равна 1/ √ LС. От сюда видно, что она будет тем больше, чем меньше индуктивность и емкость контура.

Для получения электромагнитных волн Г. Герц использовал простое устройство, называемое сейчас вибратором Герца.

Это устройство представляет собой открытый колебательный контур.

К открытому контуру можно перейти от закрытого, если постепенно раздвигать пластины конденсатора, уменьшая их площадь и одновременно уменьшая число вит­ков в катушке. В конце концов, полу­чится просто прямой провод. Это и есть открытый колебательный кон­тур. Емкость и индуктивность вибратора Герца малы. Поэтому частота колебаний весьма велика.


В открытом контуре заряды не сосредоточены на концах, а распределены по всему проводнику. Ток в данный момент времени во всех сечениях проводника направлен в одну и ту же сторону, но сила тока неодинакова в различных сечениях проводника. На концах она равна нулю, а посредине достигает макси­мума (в обычных же цепях переменного тока сила тока во всех сечениях в данный момент вре­мени одинакова.) Электромагнитное поле также охватывает все пространство возле контура.

Герц получал элек­тромагнитные волны, возбуждая в вибраторе с помощью источника вы­сокого напряжения серию импульсов быстропеременного тока. Колебания электрических зарядов в вибраторе создают электромагнитную волну. Только колебания в вибраторе совер­шает не одна заряженная частица, а огромное число электронов, дви­жущихся согласованно. В электро­магнитной волне векторы Е и В пер­пендикулярны друг другу. Вектор Е лежит в плоскости, проходящей че­рез вибратор, а вектор В перпенди­кулярен этой плоскости. Излучение волн происходит с максимальной ин­тенсивностью в направлении, перпен­дикулярном оси вибратора. Вдоль оси излучения не происходит.

Электромагнитные волны реги­стрировались Герцем с помощью приемного вибратора (резонатора), представляющего собой такое же устройство, как и излучающий вибра­тор. Под действием переменного электрического поля электромагнит­ной волны в приемном вибраторе возбуждаются колебания тока. Если собственная частота приемного ви­братора совпадает с частотой элек­тромагнитной волны, наблюдается резонанс. Колебания в резонаторе происходят с большой амплитудой при расположении его параллельно излучающему вибратору. Герц обнаруживал эти колебания, наблюдав искорки в очень маленьком промежутке между проводниками приемного вибратора. Герц не только получил электромагнитные волны, но и обнаружил, что они ведут себя подобно другие видам волн.

Электромагнитными волнами называется процесс распространения в пространстве переменного электромагнитного поля . Теоретически существование электромагнитных волн предсказано английским ученым Максвеллом в 1865 г., а впервые они экспериментально получены немецким ученым Герцем в 1888 г.

Из теории Максвелла вытекают формулы, описывающие колебания векторов и. Плоская монохроматическая электромагнитная волна, распространяющаяся вдоль оси x , описывается уравнениями

Здесь E и H - мгновенные значения, а E m и H m - амплитудные значения напряженности электрического и магнитного полей, ω - круговая частота, k - волновое число. Векторы и колеблются с одинаковой частотой и фазой, взаимно перпендикулярны и, кроме того, перпендикулярны вектору - скорости распространения волны (рис. 3.7). Т. е. электромагнитные волны поперечны.

В вакууме электромагнитные волны распространяются со скоростью. В среде с диэлектрической проницаемостью ε и магнитной проницаемостью µ скорость распространения электромагнитной волны равна:

Частота электромагнитных колебаний, так же, как и длина волны, могут быть в принципе любыми. Классификация волн по частоте (или длине волны) называется шкалой электромагнитных волн. Электромагнитные волны делятся на несколько видов.

Радиоволны имеют длину волны от 10 3 до 10 -4 м.

Световые волны включают:

Рентгеновское излучение - .

Световые волны - это электромагнитные волны, которые включают в себя инфракрасную, видимую и ультрафиолетовую части спектра. Длины световых волн в вакууме, соответствующие основным цветам видимого спектра, указаны в нижеприведенной таблице. Длина волны дана в нанометрах.

Таблица

Для световых волн характерны те же свойства, что и для электромагнитных волн.

1. Световые волны поперечны.

2. В световой волне колеблются вектора и.

Опыт показывает, что все виды воздействий (физиологическое, фотохимическое, фотоэлектрическое и др.) вызываются колебаниями электрического вектора . Его называют световым вектором .

Амплитуду светового вектора E m часто обозначают буквой A и вместо уравнения (3.30) используют уравнение (3.24).

3. Скорость света в вакууме.

Скорость световой волны в среде определяется по формуле (3.29). Но для прозрачных сред (стекло, вода) обычно.


Для световых волн вводится понятие - абсолютный показатель преломления.

Абсолютным показателем преломления называется отношение скорости света в вакууме к скорости света в данной среде

Из (3.29), с учетом того, что для прозрачных сред , можно записать равенство.

Для вакуума ε = 1 и n = 1. Для любой физической среды n > 1. Например, для воды n = 1,33, для стекла . Среда с большим показателем преломления называется оптически более плотной. Отношение абсолютных показателей преломления называется относительным показателем преломления:

4. Частота световых волн очень велика. Например, для красного света с длиной волны.

При переходе света из одной среды в другую частота света не изменяется, но изменяется скорость и длина волны.

Для вакуума - ; для среды - , тогда

.

Отсюда длина волны света в среде равна отношению длины волны света в вакууме к показателю преломления

5. Поскольку частота световых волн очень велика , то глаз наблюдателя не различает отдельных колебаний, а воспринимает усредненные потоки энергии. Таким образом вводится понятие интенсивности.

Интенсивностью называется отношение средней энергии, переносимой волной, к промежутку времени и к площади площадки, перпендикулярной направлению распространения волны:

Поскольку энергия волны пропорциональна квадрату амплитуды (см. формулу (3.25)), то интенсивность пропорциональна среднему значению квадрата амплитуды

Характеристикой интенсивности света, учитывающей его способность вызывать зрительные ощущения, является световой поток - Ф .

6. Волновая природа света проявляется, например, в таких явлениях, как интерференция и дифракция.

Дж. Максвелл в 1864 г. создал теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. В пространстве, где существует переменное магнитное поле, возбуждается переменное электрическое поле, и наоборот.

Электромагнитное поле – один из видов материи, характеризуемый наличием электрического и магнитного полей, связанных непрерывным взаимным превращением.

Электромагнитное поле распространяется в пространстве в виде электромагнитных волн. Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Эти волны излучаются колеблющимися заряженными частицами, которые при этом движутся в проводнике с ускорением. При движении заряда в проводнике создается переменное электрическое поле, которое порождает переменное магнитное поле, а последнее, в свою очередь, вызывает появление переменного электрического поля уже на большем расстоянии от заряда и так далее.

Электромагнитное поле, распространяющееся в пространстве с течением времени, называется электромагнитной волной .

Электромагнитные волны могут распространяться в вакууме или любом другом веществе. Электромагнитные волны в вакууме распространяются со скоростью света c=3·10 8 м/с . В веществе скорость электромагнитной волны меньше, чем в вакууме. Электромагнитная волна переносит энергию.

Электромагнитная волна обладает следующими основными свойствами: распространяется прямолинейно, она способна преломляться, отражаться, ей присущи явления дифракции, интерференции, поляризации. Всеми этими свойствами обладают световые волны , занимающие в шкале электромагнитных излучений соответствующий диапазон длин волн.

Мы знаем, что длина электромагнитных волн бывает самой различной. Посмотрев на шкалу электромагнитных волн с указанием длин волн и частот различных излучений, мы различим 7 диапазонов: низкочастотные излучения, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и гамма-излучение.


  • Низкочастотные волны . Источники излучения: токи высокой частоты, генератор переменного тока, электрические машины. Применяются для плавки и закалки металлов, изготовление постоянных магнитов, в электротехнической промышленности.
  • Радиоволны возникают в антеннах радио- и телевизионных станций, мобильных телефонах, радарах и т. д. Применяются в радиосвязи, телевидении, радиолокации.
  • Инфракрасные волны излучают все нагретые тела. Применение: плавка, резка, сварка тугоплавких металлов с помощью лазеров, фотографирование в тумане и темноте, сушка древесины, фруктов и ягод, приборы ночного видения.
  • Видимое излучение. Источники — Солнце, электрическая и люминесцентная лампа, электрическая дуга,лазер. Применяется: освещение, фотоэффект, голография.
  • Ультрафиолетовые излучение . Источники: Солнце, космос, газоразрядная (кварцевая) лампа, лазер. Оно способно убивать болезнетворные бактерии. Применяется для закаливания живых организмов.
  • Рентгеновское излучение .

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации