Как зависит сила сопротивления воздуха от формы предмета и его массы. Аэродинамическое сопротивление автомобиля

Является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией .

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха , когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

C x 0 - безразмерный аэродинамический коэффициент сопротивления, получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) - площадь поперечного сечения;
  • для крыльев и оперения - площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов - либо площадь лопастей, либо ометаемая площадь винта;
  • для продолговатых тел вращения ориентированных вдоль потока (фюзеляж, оболочка дирижабля) - приведённая волюметрическая площадь, равная V 2/3 , где V - объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости.

Индуктивное сопротивление

Индуктивное сопротивление (англ. lift-induced drag ) - это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение во-первых сопровождается образованием подъёмной силы, а во-вторых - приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления.

На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы, но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху. При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей - вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению λ , плотности среды ρ и квадрату скорости V:

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

X = X 0 + X i

Так как сопротивление при нулевой подъёмной силе X 0 пропорционально квадрату скорости, а индуктивное X i - обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости, X 0 растёт, а X i - падает, и график зависимости суммарного сопротивления X от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых X 0 и X i , при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит наивысшим аэродинамическим качеством .


Wikimedia Foundation . 2010 .

вследствие торможения перед телом скорость потока уменьшается, а давление увеличивается. Степень его увеличения зависит от формы передней части тела. Пе­ред плоской пластинкой давление больше, чем перед каплевидным телом. За телом, вследствие разрежения, давление уменьшается, при этом у плоской пластинки па большую величину по сравнению с каплевидным телом.

Таким образом, перед телом и за ним образуется разность давлений, в результате чего создается аэроди­намическая сила, называемая сопротивлением давления. Кроме этого, из-за трения воздуха в пограничном слое возникает аэродинамическая сила, которая называется сопротивлением трения.

При симметричном обтекании тела сопротивление

давления и сопротивление трения направлены в сторо­ну, противоположную движению тела, и вместе состав­ляют силу лобового сопротивления. Опытами установлено, что аэродинамическая сила зависит от скорости потока, массовой плотности возду­ха, формы и размеров тела, положения его в потоке и состояния поверхности. При повышении скорости набегающего потока его кинетическая энергия, которая пропорциональна квад-рату скорости, увеличивается. Поэтому при обтекании плоской пластины, направленной перпендикулярно по-току, с увеличением скорости давление в передней час-


ти ее возрастает, так как большая часть кинетической энергии потока при торможении переходит в потенци­альную энергию давления. При этом за пластинкой дав­ление еще больше уменьшается, так как из-за увеличе­ния инертности струи увеличивается протяженность области пониженного давления. Таким образом, при по­вышении скорости потока из-за увеличения разности дав­ления перед телом и за ним пропорционально квадрату скорости возрастает аэродинамическая сила сопротив­ления.

Ранее было установлено, что плотность воздуха ха­рактеризует инертность его: чем больше плотность, тем больше инертность. Для движения тела в более инерт­ном, а следовательно, в более плотном воздухе требует­ся приложить больше усилий для сдвига частиц возду­ха, а это значит, что и воздух будет с большей силой воздействовать на тело. Следовательно, чем выше плот­ность воздуха, тем больше аэродинамическая сила, дей­ствующая на движущееся тело.

В соответствии с законами механики величина аэро-динамической силы пропорциональна площади сечения тела, перпендикулярного к направлению действия дан­ной силы. Для большинства тел таким сечением явля­ется наибольшее поперечное сечение, называемое миде­лем, а для крыла - площадь его в плане.

Форма тела влияет на характер аэродинамического спектра (скорость струек, обтекающих данное тело), а следовательно, и на разность давлений, что определяет величину аэродинамической силы. При изменении поло­жения тела в воздушном потоке изменяется его спектр обтекания, что влечет за собой изменение величины и направления аэродинамических сил.

Тела, имеющие менее шероховатую поверхность, ис­пытывают меньшие силы трения, так как на большей части поверхности их пограничный слой имеет ламинар­ное течение, в котором сопротивление трения меньше, чем в турбулентном.

Таким образом, если влияние формы и положения
тела в потоке, степень обработки его поверхности учесть
поправочным коэффициентом, который называется аэро­
динамическим коэффициентом, то можно сделать вывод,
что аэродинамическая сила прямо пропорциональна сво-
ему коэффициенту, скоростному напору и площади ми-
деля тела (у крыла -его площади),


Если обозначить полную-аэродинамическую силу со­противления воздуха буквой R, аэродинамический коэф­фициент ее - скоростной напор - q, а площадь кры­ла- то формулу сопротивления воздуха можно запи­сать следующим обвазом:


атак как скоростной напор равен

иметь вид:


формула будет


Приведенная формула силы сопротивления воздуха шляется основной, так как по аналогичным ей форму-пай можно определить величину любой аэродинамиче-кой силы, заменив только обозначение силы и ее ко­эффициента.

Полная аэродинамическая сила и ее составляющая

Поскольку кривизна крыла сверху больше, чем сни-зу, то при встрече его с воздушным потоком согласно закону постоянства секундного расхода воздуха, мест­ная скорость обтекания крыла вверху больше, чем вни­зу, а у ребра атак она резко уменьшается и в отдельных точках падает до нуля. Согласно закону Бернулли пе­ред крылом и под ним возникает область повышенного давления; над крылом и за ним возникает область по­ниженного давления. Кроме того, вследствие вязкости воздуха. возникает сила, трения в пограничном слое. Кар-тина распределения давлений по профилю крыла зави­сит от положения крыла в воздушном потоке, для ха­рактеристики которого пользуются понятием «угол атаки».

Углом, атаки крыла (α) называется угол, заключен­ный между направлением хорды крыла и набегающим потоком воздуха или направлением вектора скорости по­лета, (рис. 11).

Распределение давления по профилю изображается и виде векторной диаграммы. Для ее построения вычер­чивают профиль крыла, размечают на нем точки, в ко-



торых измерялось давление, и от этих точек векторами откладывают величины избыточных давлений. Ноли в данной точке давление пониженное, то стрелку вектора направляют от профиля, если же давление повышенное, то к профилю. Концы векторов соединяют общей лини­ей. На рис. 12 изображена картина распределения дав­лений по профилю крыла на малых и больших углах атаки. Из нее видно, что наибольшее разрежение полу­чается на верхней поверхности крыла в месте макси­мального сужения струек. При угле атаки, равном ну­лю, наибольшее разрежение будет в месте наибольшей толщины профиля. Под крылом также происходит су­жение струек, в результате чего и там будет зона раз­режения, но меньшая, чем над крылом. Перед носком крыла - область повышенного давления.

При увеличении угла атаки зона разрежения смеща­ется к ребру атаки и значительно увеличивается. Это происходит потому, что место наибольшего сужения струек перемещается к ребру атаки. Под крылом час­тицы воздуха, встречая нижнюю поверхность крыла, притормаживаются, в результате чего давление повы­шается.

Каждый вектор избыточного давления, изображен­ный на диаграмме, представляет собой силу, действую­щую на единицу поверхности крыла, то есть каждая стрелка обозначает в определенном масштабе величину избыточного давления, или разность между местным давлением и давлением в невозмущенном потоке:

Просуммировав все векторы, можно получить аэро­динамическую силу без учета сил трения. Данная сила с учетом силы трения воздуха в пограничном слое сос­тавит полную аэродинамическую силу крыла. Таким образом, полная аэродинамическая сила (R) возникает ко причине разности давлений перед крылом и за ним, под крылом и над ним, а также в результате трения воздуха в пограничном слое.

Точка приложения полной аэродинамической силы находится на хорде крыла и называется центром дав­ления (ЦД). Поскольку полная аэродинамическая сила действует в сторону меньшего давления, то она будет направлена вверх и отклонена назад.

В соответствии с основным законом сопротивления

Рис. 13. Разложение полной аэродинамической силы крыла на сос­тавляющие

воздуха полная аэродинамическая сила выражается фор­мулой:

Полную аэродинамическую силу принято рассмат­ривать как геометрическую сумму двух составляющих: одна из них, У, перпендикулярная невозмущенному по­току, называется подъемной силой, а другая, Q, на­правленная противоположно движению крыла, называ­ется силой лобового сопротивления.

Каждую из этих сил можно рассматривать как алгеб­раическую сумму двух слагаемых: силы давления и си­лы трения. Для подъемной силы практически можно пренебречь вторым слагаемым и считать, что она явля­ется только силой давления. Сопротивление же нужно рассматривать как сумму сопротивления давления и сопротивления трения (рис. 13).

Угол, заключенный между векторами подъемной си­лы и полной аэродинамической силы, называется углом Качества (Θк).


Подъемная сила крыла

Подъемная сила (У) создается за счет разности средних давлений снизу и сверху крыла.

При обтекании несимметричного профиля скорость потока над крылом больше, чем под крылом, вследствие большей кривизны верхней поверхности крыла и, в со­ответствии с законом Бернулли, давление сверху оказы­вается меньше, чем снизу.

Если профиль крыла симметричный и угол атаки равен нулю, то обтекание является симметричным, дав­ление над крылом и под ним одинаковое и подъемной силы не возникает (рис. 14). Крыло симметричного про­филя создает подъемную силу только при отличном от нуля угле атаки.



Отсюда следует, что величина подъемной силы рав­на произведению разности избыточных давлений под крылом (Ризб.нижн) и над ним (Ризб. верхн) на площадь крыла:

С Y -коэффициент подъемной силы, который опре­деляется опытным путем при продувке крыла в аэроди­намической трубе. Величина его зависит: 1 - от формы крыла, которая принимает главное участие в создании подъемной силы; 2 - от угла атаки (ориентировка кры­ла относительно потока); 3 - от степени обработки крыла (отсутствие шероховатостей, целостность мате­риала и пр.).

Если по данным продувки крыла несимметричного профиля в аэродинамической трубе на различных уг­лах атаки построить график, то он будет выглядеть следующим образом (рис. 15).

Из него видно, что:

1. При некотором отрицательном значении угла ата­ки коэффициент подъемной силы равен нулю. Это угол аыки нулевой подъемной силы и обозначается он α0.

2. С увеличением угла атаки до некоторого значения



Рис. 14. Обтекание кры­ла дозвуковым потоком: а - спектр обтекания (пограничный слой не показан); б - распреде­ление давления (картина давления)

Рис. 15. График зависи­
мости коэффициента
подъемной силы и коэф­
фициента лобового со­
противления от угла
атаки.


Рис, 16. Срыв потока на закритических углах атаки: в точке А давление больше, чем в точке Б, а в точке В давление больше, чем в точках А и Б

коэффициент подъемной силы возрастает пропорцио­нально (по прямой линии), после некоторого значения угла атаки прирост коэффициента подъемной силы уменьшается, что объясняется образованием завихрений на верхней поверхности.

3. При определенном значении угла атаки коэффи­циент подъемной силы достигает максимального значе­ния. Этот угол называется критическим и обозначается α кр. Затем при дальнейшем увеличении угла атаки ко­эффициент подъемной силы уменьшается, что происходит из-за интенсивного срыва потока с крыла, вызванного движением пограничного слоя против движения основ­ного потока (рис. 16).

Диапазон эксплуатационных углов атаки составляют углы от α 0 до α кр. На углах атаки, близких к критиче­ским, крыло не обладает достаточной устойчивостью и плохо управляется.

Инструкция

Найдите силу сопротивления движению, которая действует на равномерно прямолинейно движущееся тело. Для этого при помощи динамометра или другим способом измерьте силу, которую необходимо приложить к телу, чтобы оно двигалось равномерно и прямолинейно. По третьему закону Ньютона она будет численно равна силе сопротивления движения тела.

Определите силу сопротивления движению тела, которое перемещается по горизонтальной поверхности. В этом случае сила трения прямо пропорциональна силе реакции опоры, которая, в свою очередь равна силе тяжести, действующей на тело. Поэтому сила сопротивления движению в этом случае или сила трения Fтр равна произведению массы тела m, которая измеряется весами в килограммах, на ускорение свободного падения g≈9,8 м/с² и коэффициент пропорциональности μ, Fтр=μ∙m∙g. Число μ называется коэффициентом трения и зависит от поверхностей, входящих в контакт при движении. Например, для трения стали по дереву этот коэффициент равен 0,5.

Рассчитайте силу сопротивления движению тела, движущегося по . Кроме коэффициента трения μ, массы тела m и ускорения свободного падения g, она зависит от угла наклона плоскости к горизонту α. Чтобы найти силу сопротивления движению в этом случае, нужно найти произведения коэффициента трения, массы тела, ускорения свободного падения и косинуса угла, под которым плоскость к горизонту Fтр=μ∙m∙g∙сos(α).

При движении тела в воздухе на невысоких скоростях сила сопротивления движению Fс прямо пропорциональна скорости движения тела v, Fc=α∙v. Коэффициент α зависит от свойств тела и вязкости среды и рассчитывается отдельно. При движении на высоких скоростях, например, при падении тела со значительной высоты или движении автомобиля, сила сопротивления прямо пропорциональна квадрату скорости Fc=β∙v². Коэффициент β дополнительно рассчитывается для высоких скоростей.

Источники:

  • 1 Общая формула для силы сопротивления воздуха На рисунке

Для определения силы сопротивления воздуха создайте условия, при которых тело начнет под действием силы тяжести двигаться равномерно и прямолинейно. Рассчитайте значение силы тяжести, оно будет равно силе сопротивления воздуха. Если тело движется в воздухе, набирая скорость, сила его сопротивления находится при помощи законов Ньютона, также силу сопротивления воздуха можно найти из закона сохранения механической энергии и специальных аэродинамических формул.

Вам понадобится

  • дальномер, весы, спидометр или радар, линейка, секундомер.

Инструкция

Перед измерением сопротивления б/у резистора обязательно выпаяйте его из старой платы или блока. Иначе он может быть шунтирован другими деталями схемы, и вы получите неправильные показания его сопротивления .

Видео по теме

Чтобы найти электрическое сопротивление проводника, воспользуйтесь соответствующими формулами. Сопротивление участка цепи находится по закону Ома. Если же известен материал и геометрические размеры проводника, его сопротивление можно рассчитать при помощи специальной формулы.

Вам понадобится

  • - тестер;
  • - штангенциркуль;
  • - линейка.

Инструкция

Вспомните, что подразумевает собой понятие резистора. В данном случае под резистором надо понимать любой проводник или элемент электрической цепи, имеющий активное резистивное сопротивление. Теперь важно задаться вопросом о том, как действует изменение значения сопротивления на значение силы тока и от чего оно зависит. Суть явления сопротивления заключается в том, что резистора формируют своего рода барьер для прохождения электрических зарядов. Чем выше сопротивление вещества, тем более плотно расположены атомы в решетке резистивного вещества. Данную закономерность и объясняет закон Ома для участка цепи. Как известно, закон Ома для участка цепи звучит следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на участке и обратно пропорциональна сопротивлению самого участка цепи.

Изобразите на листе бумаги график зависимости силы тока от напряжения на резисторе, а также от его сопротивления, исходя из закона Ома. Вы получите график гиперболы в первом случае и график прямой во втором случае. Таким образом, сила тока будет тем больше, чем больше напряжение на резисторе и чем меньше сопротивление. Причем зависимость от сопротивления здесь более яркая, ибо она имеет вид гиперболы.

Обратите внимание, что сопротивление резистора также изменяется при изменении его температуры. Если нагревать резистивный элемент и наблюдать при этом за изменением силы тока, то можно заметить, как при увеличении температуры уменьшается сила тока. Данная закономерность объясняется тем, что при увеличении температуры увеличиваются колебания атомов в узлах кристаллической решетки резистора, уменьшая таким образом свободное пространство для прохождения заряженных частиц. Другой причиной, уменьшающей силу тока в данном случае, является тот факт, что при увеличении температуры вещества увеличивается хаотичное движение частиц, в том числе заряженных. Таким образом, движение свободных частиц в резисторе становится в большей степени хаотичным, чем направленным, что и сказывается на уменьшении силы тока.

Видео по теме

Величина силы сопротивления воздуха зависит от формы снаряда, состояния поверхности его корпуса, площади его наибольшего поперечного сечения, плотности воздуха, скорости снаряда относительно воздуха, скорости распространения звука и положения продольной оси снаряда относительно вектора скорости снаряда.

Рассмотрим кратко, как перечисленные выше факторы влияют на величину силы сопротивления воздуха.

Форма и состояние поверхности снаряда. О влиянии формы снаряда и состояния его поверхности на величину силы сопротивления воздуха указывалось при рассмотрении факторов, обусловливающих возникновение силы сопротивления воздуха.

Рис. 12. Влияние формы снаряда на ооразование головной и хвостовой

волн и завихрений позади снаряда:

а - цилиндрический снаряд; б -шаровой снаряд (ядро); в - продолговатый снаряд с цилиндрической запоясковой частью (старая фугасная граната);

г -продолговатый снаряд с конической запоясковой частью

Зависимость величины волнового и вихревого сопротивлений от формы снаряда наглядно видна на рис. 12, на котором приведены моментальные фотографии снарядов, выпущенных с примерно одинаковой начальной скоростью.

Наименьшие волны и завихрения получаются у снаряда, имеющего наиболее заостренную головную часть и скошенную донную часть, наибольшие волны и завихрения - у цилиндрического снаряда.

Но следует иметь в виду, что при выборе оптимальной формы снаряда необходимо наряду с уменьшением сопротивления воздуха обеспечить устойчивость полета снаряда, рациональное использование металла, снаряжения и эффективное действие снаряда у цели; поэтому снаряды различных типов имеют неодинаковую форму.

Зависимость величины силы сопротивления воздуха от формы снаряда выражается коэффициентом формы i.

Для снаряда данного типа, форма которого принята за эталон, коэффициент формы принимают равным единице. При изменении формы снаряда относительно эталонной коэффициент формы определяется опытным путем.

Площадь наибольшего поперечного сечения. Если угол нутации δ = 0, то количество элементарных частиц воздуха, которые снаряд будет встречать на своем пути, при прочих равных условиях будет зависеть от площади его наибольшего поперечного сечения. Чем больше площадь поперечного сечения снаряда, тем больше элементарных частиц воздуха будет воздействовать на снаряд, тем больше будет и сила сопротивления воздуха. Экспериментальные данные показывают, что сила сопротивления воздуха изменяется пропорционально изменению площади поперечного сечения снаряда.

Плотность воздуха. Под плотностью воздуха понимают массу воздуха, приходящуюся на единицу его объема. Изменение массы воздуха в единице объема может произойти за счет изменения количества элементарных частиц (молекул), приходящихся на единицу объема, или за счет изменения массы каждой частицы. Если, например, плотность воздуха увеличилась, то это значит, что или увеличилось количество элементарных частиц в каждой единице объема воздуха, или увеличилась масса частиц (или то и другое вместе), а раз так, то и сила воздействия воздуха на каждую единицу поверхностной площади снаряда возрастет, следовательно, возрастет и полное сопротивление воздуха.



Установлено, что сила сопротивления воздуха изменяется пропорционально изменению плотности воздуха.

Скорость снаряда. Исследования показывают, что сила сопротивления воздуха прямо пропорциональна квадрату скорости снаряда относительно воздуха. Если, например, скорость снаряда относительно воздуха увеличится в два раза, то сила сопротивления воздуха возрастет в четыре раза.

Это объясняется тем, что, во-первых, с увеличением скорости снаряда он будет в каждую единицу времени встречать на своем пути больше элементарных частиц воздуха и, во-вторых, инерция частиц воздуха при большей скорости "должна быть преодолена снарядом в более короткий момент времени, что вызовет большее противодействие со стороны частиц воздуха.

Скорость распространения звука в воздухе. Образование волнового сопротивления, как показано выше, происходит в момент, когда скорость снаряда становится равной скорости звука, т. е. в момент, когда ,

где v - скорость снаряда и а - скорость звука в воздухе.

Скорость звука в воздухе непостоянна (зависит от температуры и влажности воздуха). Следовательно, при одной и той же скорости снаряда из-за изменения скорости звука в воздухе величина волнового сопротивления и силы сопротивления воздуха в целом могут быть различными. Зависимость величины силы сопротивления воздуха от скорости распространения звука учитывается специальным коэффициентом . Величина , зависит от величины и от формы снаряда. График этой зависимости приводится на рис. 13.

Рис. 13 . График функции :

а. - снаряд с цилиндрической запоясковой частью (старая фугасная граната);

б - продолговатый снаряд с конической запоясковой частью

Положение продольной оси снаряда относительно касательной к траектории (вектора скорости). Полет снаряда в воздухе сопровождается сложными колебательными движениями вокруг центра тяжести, в результате чего продольная ось снаряда оказывается не совмещенной с направлением полета (с вектором скорости), т. е. появляются углы нутации.

При возникновении угла нутации снаряд летит уже не головной частью вперед, а подставляет встречному потоку воздуха и часть боковой поверхности. Условия обтекания снаряда воздухом из-за этого также резко ухудшаются.

Все это резко увеличивает силу сопротивления воздуха. Для уменьшения влияния этого фактора принимают меры к стабилизации полета снаряда, т. е. к уменьшению углов нутации.

Итак, влияние различных факторов на величину силы сопротивления воздуха сложно и многогранно. Поэтому обычно силу сопротивления воздуха определяют опытным путем для условий, что сила сопротивления воздуха во все время дви жения приложена к его центру тяжести и направлена по касательной к траектории, т. е, углы нутации отсутствуют.

Величину силы сопротивления воздуха выражают различными эмпирическими формулами. Одна из наиболее распро страненных имеет вид

(1.7)

где R - величина силы сопротивления воздуха, кг;

i- коэффициент формы;

S -площадь поперечного сечения снаряда, м 2 ;

ρ - плотность воздуха (масса 1 м 3 данного воздуха она равна ,

где П - вес 1 м 3 воздуха, или весовая плотность воздуха);

v - скорость снаряда относительно воздуха, м/с;

Эмпирический коэффициент, учитывающий влияние величины

отношения скорости снаряда к скорости звука в зависимости от формы снаряда.

В формуле 1.7 величина имеет самостоятельный смысл, ибо это есть ни что иное, как кинетическая энергия, или живая сила 1 м 3 воздуха. Эту величину называют скоростным напором.

Лекція 10

Тема 4. Заняття 2. Рух снаряда в повітрі

1. Прискорення сили опору повітря. Поперечн навантаження і балістичний коефіцієнт.

2. Необхідність прийняття мір для забезпечення стійкості снаряда в польоті.

3. Рух швидко обертаючогося снаряда в польоті. Деривація.

Мы настолько привыкли к тому, что окружены воздухом, что зачастую не обращаем на это внимания. Речь здесь идет, прежде всего, о прикладных технических задачах, при решении которых на первых порах забывается, что существует сила сопротивления воздуха.

Она напоминает о себе практически при любом действии. Хоть мы поедем на автомобиле, хоть полетим на самолете, даже если будем просто кидать камень. Вот и попробуем понять, что собой представляет сила сопротивления воздуха на примере простых случаев.

Вы не задумывались, почему автомобили имеют такую обтекаемую форму и ровную поверхность? А ведь все на самом деле очень понятно. Сила сопротивления воздуха складывается из двух величин - из сопротивления трения поверхности тела и сопротивления формы тела. С целью уменьшения и добиваются уменьшения неровностей и шероховатостей на внешних деталях при изготовлении автомобилей и любых иных транспортных средств.

Для этого их грунтуют, окрашивают, полируют и лакируют. Подобная обработка деталей приводит к тому, что сопротивление воздуха, воздействующее на автомобиль, уменьшается, повышается скорость автомобиля и уменьшается расход топлива при движении. Наличие силы сопротивления объясняется тем, что при движении автомобиля воздух сжимается и перед ним создается область местного повышенного давления, а за ним, соответственно, область разрежения.

Надо отметить, что при повышенных скоростях движения машины основной вклад в сопротивление вносит форма авто. Сила сопротивления, формула расчета которой приведена ниже, определяет факторы, от которых она зависит.

Сила сопротивления = Сх*S*V2*r/2

где S - площадь передней проекции машины;

Cx - коэффициент, учитывающий ;

Как нетрудно заметить из приведенной сопротивления не зависит от массы автомобиля. Основной вклад вносят два компонента - квадрат скорости и форма автомобиля. Т.е. при повышении скорости движения в два раза в четыре раза увеличится сопротивление. Ну и поперечное сечение автомобиля оказывает значительное влияние. Чем более обтекаемым будет автомобиль, тем меньше сопротивление воздуха.

И в формуле есть еще параметр, который просто требует обратить на него пристальное внимание - плотность воздуха. Но его влияние уже более заметно при полетах самолетов. Как известно, с повышением высоты уменьшается плотность воздуха. Значит, соответственно будет уменьшаться сила его сопротивления. Однако и для самолета на величину оказываемого сопротивления будут по-прежнему влиять те же факторы - скорость движения и форма.

Не менее любопытной является история изучения влияния воздуха на точность стрельбы. Работы подобного характера велись давно, первые их описания относятся к 1742 году. Эксперименты проводились в разных странах, с различной формой пуль и снарядов. В итоге проведения исследований была определена оптимальная форма пули и соотношение ее головной и хвостовой части, разработаны баллистические таблицы поведения пули в полете.

В дальнейшем проводились исследования зависимости полета пули от ее скорости, продолжала отрабатываться форма пули, а также совершенствовалась Были разработаны и создан специальный математический инструмент - баллистический коэффициент. Он показывает соотношение сил аэродинамического сопротивления и действующих на пулю.

В статье рассмотрено, что собой представляет сила сопротивления воздуха, дана формула, позволяющая определить величину и степень влияния различных факторов на величину сопротивления, рассмотрено его воздействие в разных областях техники.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации